

Technical Report on the Monexco Property, McCorkill Township, Chibougamau, Quebec. Vol. 1

Prepared For: Typhoon Exploration Inc.

By: Martin Demers P.Geo.

Date: March 6th 2018

26/01/2018

Project Location: 50 0°.620` N, 73°
58.488` W, NTS 32I04,32H13, 32J01, 32G16

TECHNICAL REPORT ON THE MONEXCO PROPERTY, MCCORKILL TOWNSHIP, CHIBOUGAMAU, QUEBEC. VOL.1

TABLE OF CONTENT

TECHNICAL REPORT ON THE MONEXCO PROPERTY, MCCORKILL TOWNSHIP, CHIBOUGAMAU, QUEBEC. VOL.1	1
CERTIFICATE OF QUALIFIED PERSON.....	7
1. SUMMARY.....	9
2. INTRODUCTION AND TERMS OF REFERENCE.....	19
2.1 Recipient:.....	19
2.2 Introduction and Objectives:	19
2.3 The Monexco Project: Exploration Background.....	20
2.4 Disclaimer	21
3. RELIANCE ON OTHER EXPERTS, SOURCE OF DATA AND INFORMATION	21
4. PROPERTY DESCRIPTION AND LOCATION	23
4.1 Area	23
4.2 Location.....	23
4.3 Mineral Tenure.....	24
4.4 Nature and Extent of the Issuer`s Title.....	25
4.5 Agreements and Royalties	27
4.6 Environmental Liability.....	27
4.7 Required Permits	28
4.8 Risk Factors	29
Access to the Territory	29
Community relations.....	29
Environment.....	30
5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURES AND PHYSIOGRAPHY	31
5.1 Accessibility	31
5.2 Physiography, Drainage, Topography, Vegetation	32
5.3 Infrastructures and Local Resources	33
5.4 Climate.....	34

6.0 HISTORY.....	35
6.1 Exploration Works Prior to 2003, or Before Typhoon Ownership	35
6.1.1 Exploration Works, 1950-1959	35
6.2.3 Exploration Works, 1980-1990	41
6.2.4 Exploration Works, 1990-2000	45
6.2 Exploration Works Under Typhoon Management	46
7. REGIONAL GEOLOGICAL SETTING AND MINERALIZATION	52
7.1 Regional Geology	52
7.2 Property Geology	58
7.3 Mineralization.....	66
8. DEPOSIT TYPES.....	72
9. EXPLORATION WORKS	75
9.1 Typhoon Exploration 2002-2008 Sampling Works.....	75
Monexco No.1, Monexco No.3, VG	77
Monexco No.2, Le Pic.....	77
Moly-1, Moly-2	78
Rivière Nord, 1WS, 1WN, Cric France	79
Montagne, Karine Nord, Karine Sud	80
9.2 2015 and 2016 prospecting and sampling.....	81
9.2.1 2015 Field Works	81
9.2.2 2016 Field Works	82
Monexco No.1	83
Rivière Nord Stripping Area.....	85
Monexco No.3, Karine Nord.....	88
VG.....	90
Moly1, Moly2	93
Monexco North-East Extensions	96
Monexco South-East Area	98
West Property Area	100
Monexco Eastern Property	105
McCorkill Trend.....	107
10. DRILLING	112
10.1 Historical drilling.....	112
10.2 Drilling by Typhoon	114
11. SAMPLE PREPARATION, ANALYSES AND SECURITY	117
11.1 2004-2011 Drilling.....	117
11.2 2015-2016 sampling programs	117
11.3 laboratories	118
12. DATA VERIFICATION	119
12.1 Typhoon Data Audit	119

12.1.0 2003 Channel and grab sampling	120
12.1.1 2004 Channel and grab sampling, drilling	120
12.1.2 2004 Drilling	121
12.2.3 2007 Sampling	121
12.2.4 2008 Sampling	121
12.1.5 2011 Drilling	122
12.2 2015-2016 Quality Control	122
13. MINERAL PROCESSING AND METALLURGICAL TESTING	123
14. MINERAL RESSOURCES ESTIMATES	123
16.0 TO 22.0 ADDITIONAL REQUIREMENTS FOR ADVANCED PROPERTIES	123
23. ADJACENT PROPERTIES	124
24.0 OTHER RELEVANT DATA AND INFORMATION	126
25.0 INTERPRETATION AND CONCLUSIONS	126
26.0 RECOMMANDATIONS	128
27. REFERENCES	131
27.1 Authors references	131
27.2 Web sites references	133
27.3 Assessment Reports Listing	134

LIST OF FIGURES

Figure 1 : Monexco property location	23
Figure 2 : mining titles map. source: gescad inc	24
Figure 3 : Chibougamau region inside the Eyou Istchee category 3 territory of James Bay Agreements with reserves to exploration corresponding to red, orange and purple areas. source: gestim.mines.gouv.qc.ca	26
Figure 4 : Position of the Monexco property inside the cree nation traplines map. source: https://apps.creegeoportal.ca	27
Figure 5 : position of the monexco property inside the quebec-cree environmental protection strategy for the Rupert River watershed. orange: claims map, green: protected areas, yellow: expansion project. source: http://www.eeyouconservation.com/broadback-watershed-conservation-plan.html	30
Figure 6 : examples of pre Typhoon exploration environmental impacts on the property. left, boat access fitted out by the wildlife reserve of Albanel-Mistassini-et-Waconichi Lakes Reserve. Right, blasted outcrop from late eighties exploration activity.	31

Figure 7 : position of the Monexco property at the head of the Nottaway River watershed. source: St-Laurent, D., 1999.....	32
Figure 8 : valley topography collecting Rivière France. paler green area corresponding to harvested forest.	33
Figure 9 : average monthly temperature and precipitation graph for the Chapais station located about 65km from the Monexco property center. source: http://climat.meteo.gc.ca	34
Figure 10 : Monexco property with assessment works filed between 1950 and 1959.....	38
Figure 11 : Monexco property with assessment works filed between 1960 and 1979.....	41
Figure 12 : Monexco property with assessment works filed between 1980 and 1989.....	44
Figure 13 : Monexco property with assessment works filed between 1990 and 2000.....	46
Figure 14 : ground geophysics compilation, magnetometry and IP surveys realized under Typhoon management in 2003-2004. Source: MB Geosolutions, Dec. 2008.	51
Figure 15 : 2003-2008 channel sampling covering the Monexco gold showing area.....	52
Figure 16 : the Monexco property in the Chibougamau area geological map. fROM Daigneault R., et al.,1990, MM89-03.	56
Figure 17 : position of the Monexco property in the Chibougamau Camp with main faults identified. from Daigneault R. et al.,1990, MM89-03.	56
Figure 18 : idealized stratigraphic section of the Roy Group with the Monexco property environment highlighted. Source: Leclerc F., 2011.....	57
Figure 19 : photos presentation of the Monexco gold showing area.....	61
Figure 20 : photos presentation of Mccorkill (France Est gold showing) area.....	64
Figure 21 : 2016 field program geological stations superimposed on the geological map from DPV-537 (Duquette G.,1982).....	65
Figure 22 : 2016 geological stations superimposed on the sigeom thematic map. compilation of magnetic anomalies and potential structures by Geologica inc. (2002).....	66
Figure 23 :photo presentation of the gold mineralization style of Monexco property.....	71
Figure 24 : Gwillim mine, 107 level plan geological interpretation and veins position. From Bouchard G. et al., 1984.	74
Figure 25 : pre 2015 channel sampling pattern on the Monexco property.	76
Figure 26 : pre 2015 channel sampling coverage of Monexco gold showing area.....	76
Figure 27 : Le Pic and Monexco No.2 stripping mapping with 2002-2008 channel sampling....	78
Figure 28 : Moly 1 and Moly 2 strippings with 2002-2008 channel sampling.....	79
Figure 29 : Scuba, 1WN, 1WS, Riviere Nord, Cric France map with 2002-2008 channel sampling.....	80
Figure 30 : Montagne, Karine South and North Strippings with 2002-2008 channel sampling. .	81
Figure 31 : 2015-2016 sampling map index.....	82
Figure 32 : Monexco No.1 stripping area with 2015-2016 sampling and geological mapping....	84
Figure 33 : Riviere Nord stripping area with 2015-2016 sampling and geological mapping....	86
Figure 34 : Monexco No.3 stripping area with 2015-2016 sampling and geological mapping....	89
Figure 35 : VG stripping area with 2015-2016 sampling and geological mapping.	91
Figure 36 : Moly 1 and Moly 2 stripping area with 2015-2016 sampling and geological mapping.	94
Figure 37 : Monexco North-East area with 2015-2016 sampling and geological mapping.	97
Figure 38 : Monexco South-East area with 2015-2016 sampling and geological mapping.	99
Figure 39 : 2015-2016 sampling of the western area of the Monexco property.	102

Figure 40 : 2015-2016 sampling covering the eastern area of the Monexco property.	106
Figure 41 : 2015-2016 sampling of Mc Corkill trend and France Est gold showing.	109
Figure 42 : diamond drill holes compilation, Monexco property.	
Source: sgeom.mines.gouv.qc.ca.....	113
Figure 43 : Typhoon Exploration diamond drilling compilation map.	116
Figure 44 : adjacent claims blocks to the Monexco property. December 2017 situtation.	
source: sgeom.mines.gouv.qc.ca.....	125

LIST OF TABLES

Table 1 : mining titles management table.....	25
Table 2 : assessment reports filed between 1950 and 1959 on the Monexco property.	
source: sgeom.mines.gouv.qc.ca.....	37
Table 3 : assessment reports filed between 1960 and 1979 on the Monexco property.	
source: sgeom.mines.gouv.qc.ca.....	40
Table 4 : assessment reports filed between 1980 and 1989 on the Monexco property.	
source: sgeom.mines.gouv.qc.ca.....	44
Table 5 : assessment reports filed between 1990 and 2000 on the Monexco property.	
source: sgeom.mines.gouv.qc.ca.....	45
Table 6 : exploration reports done under Typhoon management from 2002 to 2011.	51
Table 7 : deformation history, Chibougamau segment.	
source: MB2015-4 (Vézina et al., 2015).	54
Table 8 : Inventory of gesoscientific works covering the Monexco property.	
source: sgeom.mines.gouv.qc.ca.....	55
Table 9 : geological description of the Monexco gold showing area.....	60
Table 10 : geological description of the Mccorkill (France Est gold showing) stripping area...	63
Table 11 : classification table of Monexco property gold mineralization styles.....	69
Table 12 : 2016 geological stations, Monexco No.1 stripping.....	84
Table 13 : 2015-2016 sampling compilation, Monexco No.1 stripping area.	85
Table 14 : 2016 geological stations, Rivière Nord stripping area.	87
Table 15 : 2015-2016 sampling compilation, Rivière Nord stripping area.	87
Table 16 : 2016 geological stations, Monexco No.3 stripping area.	89
Table 17 : 2015-2016 sampling compilation from Monexco No.3 stripping area.....	90
Table 18 : 2016 geological stations from the VG stripping area.	92
Table 19 : 2015-2016 sampling compilation from VG stripping area.	93
Table 20 : 2016 geological stations from Moly 1 and Moly 2 stripping area.....	95
Table 21 : 2015-2016 sampling compilation from Moly 1 and Moly 2 stripping areas.	95
Table 22 : 2016 geological stations from Monexco North-East area.	97
Table 23 : 2015-2016 sampling compilation from Monexco North-East area.	98
Table 24 : 2015-2016 sampling compilation from Monexco South-East area.	100
Table 25 : 2016 geological stations from the western part of the Monexco property.	103

Table 26 : 2015-2016 sampling compilation from the western area of the Monexco property.	105
Table 27 : 2016 geological stations from the eastern area of the Monexco property.	106
Table 28 : 2015-2016 sampling compilation from the eastern area of the Monexco property.	107
Table 29 : 2016 geological stations from the McCorkill trend and France Est gold showing area, Monexco property.....	110
Table 30 : 2015-2016 sampling compilation from McCorkill trend and France Est gold showing area, Monexco property.	111
Table 31 : compilation of historical diamond drilling, Monexco property.	
source: sigeom.mines.gouv.qc.ca	113
Table 32 : drill results compilation for copper, zinc and gold from Monexco historical drilling.	
source: sigeom.mines.gouv.qc.ca	113
Table 33 : drill intercepts from Typhoon 2004 program calculated with minimum cut off grade of 0.3 g/t gold over a minimum length of 1 m.....	115
Table 34 : intercepts from Typhoon 2004 program calculated with minimum cut off grade of 0.3 g/t gold over a minimum length of 1 m.	116
Table 35 : Monexco assays results compilation from 2003, 2004, 2007 and 2008.	119
Table 36 : recent exploration works done on claims blocks adjacent to the Monexco property.	
source: sigeom.mines.gouv.qc.ca	126
Table 37 : Monexco property recommendations and budget plan.	130

CERTIFICATE OF QUALIFIED PERSON

I, Martin Demers P.Geo. (ogq #770) do hereby certify that:

I am registered under the name Martin Demers enr., and my place of business is located 69 rue Pierre, Val d'Or, J9P 4L8.

I graduated from Université du Québec à Montréal in 1996 with a degree in geology.

I am a member in good standing of the Ordre des géologues du Québec (ogq) with the licence # 770. I have worked as a geologist since 1997. My relevant experience was built mostly by different positions fulfilled with Aurizon Mines and Hecla Québec as Project Geologist, Senior Geologist Exploration, Principal Geologist Exploration Casa Berardi Mine, Exploration Manager and Senior Geologist Corporate Development. I am running a consulting business focusing on geology, mineral potential evaluation and strategic development since January 2016.

I am the qualified person for the entire preparation of the Technical Report entitled: *Technical Report, 2015-2016 Exploration Works on the Monexco Property, McCorkill Township, Chibougamau area, Nord du Québec, NTS 32H13, 32G16, 32I04, 32J01*, dated March 6th 2018.

My involvement on the Monexco property dated back to 2016 when I prepared the last sampling program done the same year. During a period going from May to September 2016, I passed a total of 19 days on the field: from May 30th to June 6th, June 13th to June 17th, July 21th to July 24th and Sept 27th to Sept 30th. These field sessions were used to supervise the sampling process and to acquire first hand geological observations for interpreting the geological map and work on the ore deposit model to apply on the Monexco property. A core shack visit was made in April 29th 2016 when I reviewed hole MO-04-03 and MO-04-05.

I am responsible for all the sections of the technical report; The work was done using the most complete data set of different provenances which was possible to assemble concerning the property. Factors limiting the influence of results or quality of data were highlighted in the text.

I am independent of the Issuer in accordance with Section 1.5 of National Instrument 43-101 respecting standards of disclosure for mineral projects ("NI 43-101"); I am not registered as Issuer employee, shareholder, or beneficiary of a restricted shares or options buying program.

I have read the definition of "qualified person" set out in NI 43-101 regulation and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of the presented Technical Report.

I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that Instrument and Form.

As of March 6th, 2018, to the best of my knowledge, information and belief, the Technical Report contained all the scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated March 6th, 2018

M.-A. Demers

1. SUMMARY

PROPERTY BACKGROUND

Following report presents prospecting and sampling works done on the Monexco property by Typhoon Exploration Inc. during 2015 and 2016. The single block of 42 contiguous designated claims, covering 2,324.02 hectares is 100 % owned by Typhoon Exploration Inc., the "Issuer". The property is free of any encumbrance and subject to 1.5% Net Smelting Return.

The Monexco property is located about 30 km north-east of the town of Chibougamau in the Nord du Quebec region and on the Eeyou Istchee territory. The property is enclosed inside the Albanel - Mistassini - Waconichi Lakes Wildlife Reserve, a management unit included inside of Category 3 Mistassini Community Territory under the James Bay Agreement. More accurately, the claims block is centered on coordinates 573,000E, 5,539,500N in the UTM NAD83 Zone 18 projection system. The area is reached using the forestry road No A-11, about 35km east of the intersection with Road 167 connecting Chibougamau with the Cree community of Mistassini.

The property geological map touches two main regional structural features: the Rivière France corridor and Faribault Fault zone. This favorability zone for gold was recently defined by the MERN ("Énergie et Ressources Naturelles Québec") as a new high potential gold target located at the upper contact of the Gilman Formation. In this context, quartzo-feldspathic porphyry dykes intersect the Rivière France lineament in association with high levels of deformation and iron carbonate alteration (Houle P., 2003).

North-east minor faults, fractures and occasional ductile to brittle shears have created an enrichment factors in the deformation system. Other mineralization styles found on the property reflect the Chibougamau Camp metallogeny with early sulfides rich veins overprinted by late tectonic orogenic veins type deposit (Pilote et al., 1998).

Monexco claims cover public land open to mining activities. The Cree Nation is the other stakeholder. The project is not actually managed under a specific exploration agreement with the Cree Nation of Mistassini. First contact should be made with the Cree Mineral Board and the Crees Trappers Association (CTA) to insure the communication level required by the James Bay agreements.

The level of environmental liability is low on the property. Any mining or other type of industrial activity took place outside outcrops mechanical stripping, local trench blasting and access road construction. The human activity is limited to temporary hunting and fishing camps.

Exploration sites show no sign of non-compliance over the Provincial Environment Quality Act regulations and other corresponding Federal Acts.

The author certified that is not aware of any litigation that may be material to the Monexco project, nor are there any undisclosed understanding concerning any future corporate development issues.

This Technical Report was prepared in accordance with the National Instrument 43-101 at the request of Typhoon Exploration Inc. (TSX-V: TYP). It compounds all relevant data coming from historical assessment files and information generated and owned by the company since 2004 where the property was acquired. The report follows previous Technical Report filed in 2008 (Rapport technique NI 43-101 de la propriété Monexco, canton McCorkill, Chibougamau, Québec by Beauregard A.J. and Gaudreault D.).

FRAME OF THE TECHNICAL REPORT

A total of 19 days was passed on the field from June to September 2016 to overview the sampling work, and to acquire sufficient geological data to support the sampling context.

The reporting of these results was prepared following 43-101 format and requirements. It includes information concerning following topics:

- Inventory and review of historical exploration works done on the property.
- Compilation of sampling done to date by Typhoon on the Monexco property
- Description of the geological context related to gold mineralization.
- Disclosing of sampling results done after 2008.
- Discussion about the gold potential evaluation and best ways to address future exploration works.

Since 2004, Typhoon conducted different phases of works mostly concentrated on Monexco stripping zones which define a series of gold showing inside an area extending about 400 m along strike and about 250 m over a north-south section.

The 2015 program aimed to expand the mineralized area using a combination of airborne VLF and magnetometric surveys combined with structural modelling. The blind targets generated allowed to open the prospective ground more than 1 kilometer westward and along strike with the Monexco showing.

In 2016, a tight sampling was done on main mineralized outcrops to test the dominant effect of north-east fractures on gold enrichment following conclusions of a geological study initiated by the MERN ("Énergie et Ressources Naturelles Québec") "Analyse structurale de la zone de cisaillement de la Rivière France et de ses minéralisations aurifères, région de Chibougamau, Québec" by Vézina C. et al., MB2015-04. Also, the northern part of the property, initially called the "McCorkill property" was cover to re assess the gold potential of the Faribault fault zone.

EXPLORATION WORKS

1950-2000 EXPLORATION HISTORY

58 assessment reports containing information that can be located with precision inside the actual property limit and thereby used to establish the involvement of previous owner on the Monexco property. They highlight the wide application of geophysics methods and the early understanding of exploration models over the last fifty years.

Gold was first discovered on the Monexco property on a rocky point located on the western side of the Rivière France by A.L. Oakley in 1958, prospecting for Obalski (1945) Ltd. (ref. GM-10133). Observations done at the time identified 18 m wide carbonatized rocks unit hosting gold bearing quartz veins in contact with a quartz-feldspath porphyry dyke. Best grades were obtained where north-easterly minor faults intersect east-west shearing (Pudifin, 1959). The company drilled a total of 5 holes totalling 302 m and abandoned the property. Picard M. (1981) reported 14 drill intervals showing results varying between 0.01 to 0.38 opt gold (0.3 to 11.8 g/t gold) over core length of 1.0 to 2.3 feet (0.3 to 0.75 m).

Monexco Resources owned the Monexco showing area from 1973 to 1979. In 1979, SDBJ (Société de Développement de la Baie James) optioned a block of 21 claims surrounding the historical discovery. A systematic exploration approach was developed during following years including ground magnetometric, VLF and Max-Min surveys. Numbers of anomalies were controlled by trenching and prospecting. A broad range of anomalous gold grades were obtained in different contexts such as schistosed altered basalt, quartz veins and felsic dykes. Considering the low percentage of outcrop and the buried nature of most geophysical anomalies, heavy minerals from till and stream sediments, as humus, were sampled and assayed to compare the reliability of these methods. Results were not conclusive and proved the difficulty to replicate previous surveys (ref.GM-39234). The property was not properly drill tested, considering that 135 m in 6 short holes were done.

Between 1988 and 1992, SOQUEM worked on the France Project, a large land package located mostly west of Monexco property but sharing a claims block with the actual property. A tight multi-method ground geophysical survey combining magnetometry, VLF, electro-magnetic Max-Min and Induced Polarization put on map a repetition of north-east conductors competing with east-west main Rivière France trend. Drilling of 7,958.4 m in 7 holes was justified by favorable surface results and indicators. Two gold intercepts were obtained in hole 87-02: 1.3 g/t over 0.5 m, 2.3 g/t over 1.4 m (GM-48298), both located inside the Monexco property.

Initial exploration efforts done on Monexco property area was driven by strong EM responses obtained west and south of France Lake on a trend corresponding now to the Faribault Fault. According to Harris (1956), massive sulfides lenses were identified on a sheared contact between carbonate-sulfides rocks and amphibolite. Mineralization returned copper grades in the range of 0.1% to 0.7% Cu. Quartz veining associated with strong shearing and pyritization over pluri-metric widths was described but not accurately located along the structure. The lecture of drilling logs with eyes of today indicates occurrence of grey felsic dykes possibly associated with ductile deformation then described as tuff and iron carbonate. Pyrite and

pyrrhotite and ubiquitous in this environment under the form of dissemination and remobilization stringers. Assaying for gold was generally not part of the exploration strategy.

Following these initial works done by Windward Gold Mines, other companies repeated the initial sequence of works based on airborne and ground electro-magnetic surveys followed by trenching. During the eighties, the France Est gold showing was opened and cleaned over 275 m by a group of prospectors. Out of range results for copper and gold assayed by a laboratory outside the normal commercial circuit clearly identified a salting process (ref. GM-45198). Société d'Exploration Master Group and Master Group Mining Exploration Company with reports filed in 1988 and 1990 where the last organization to have work systematically the northern part of the property.

2002-2008 TYPHOON EXPLORATION WORKS

In 2002, Typhoon Exploration initiated a series of works to cover the Rivière France corridor and the Faribault Fault zone.

In 2003-2004, the property was covered by 78 km of ground magnetometry and 76 km of dipole-dipole IP survey. New trenches were open on anomalies and tested with channel samples for a cumulative length of 173.5 m. Six short diamond drill holes (MO-04-02 to MO-04-07) were drilled to follow up on results for a combined metrage of 313.5 m. The objective was to verify the immediate continuity of N040° gold bearing quartz-tourmaline veins observed and sampled on the outcrop.

In 2005, a humus soil survey was performed by IOS Services Geoscientifiques Inc. Total of 453 samples were collected at 50 m spacing centered on the Rivière France area. After a preliminary statistical treatment, gold and other pathfinders elements (Cu,Mo,Pb,Co) form sporadic anomalies. At this level of understanding, no results of this survey were crossed either with the geological map or with geophysical signals to develop further potential targets.

A bulk sample made of 25 kilograms of veins material was extracted during the summer of 2006. The objective of this operation was to test the extraction and recovery of high grade quartz-tourmaline veins. Results gave a head grade of 126.8 g/t gold for a recovery rate of 80% for 100% of the material passing 20 meshes. The material was processed at the LTM laboratory of Val d'Or during 2007 using a Knelson concentrator (St-Jean E., 2007).

Considering exploration results obtained (9) claims were staked to extend the property to the south-east along the Rivière France corridor. An extensive trenching and sampling program was realized across the property in 2007 and 2008 to follow up on polarization and humus anomalies. Seventeen (17) stripped surfaces were mapped with channel samples positions marked on the drawing. A total of 665 channel samples results were listed for this phase.

The entire property was covered with 395 lines km flew east-west at 50 m spacing. The platform combined an Helimager™ magnetic gradiometer system, the Totem-2A multi-channel VLF, and a gamma spectrometer PICO GRS-10 operated by GPR International Inc. On the ground level, an IP and resistivity survey was executed on 38 lines km at 50 m spacing to cover an area located

east of Rivière France. Eighteen (18) anomalies qualified as moderate to strong and showing continuity over 200 to 600 m were highlighted (Hubert 2008) and followed up by prospecting.

Data compilation showed that the gold system is spatially associated with an unresolved structural complexity possibly related to the Lac France Pluton emplacement. New targets were identified and tested by mechanical stripping in 2007 and 2008.

A structural modelling was submitted by Technologies Earthmetrix inc. Different images enhancing processes were generated to map brittle and ductile structures with a precision varying between 4 and 50 m. Exploration targets generated were based on the location of existing gold showing inside the structural pattern.

During 2011, Seven (7) shallow diamond drill holes were drilled to intercept down dip extension of surface high grade veins on Monexco No.1 and VG stripping for a footage of 1,044 m. The best value was obtained in Hole MO-11-05 with 1.7, 1.3 and 4.6 grams over 1.0 m in basalt (Beauregard A.J., 2012).

2015-2016 EXPLORATION WORKS

A prospecting and sampling crew was mobilized from June to October 2015. This phase of works was split between freelance prospection across the property and concentrated works on Monexco showing stripped areas. A total of 169 grab samples and 12 channel samples were collected across the property during this phase.

During 2016, the prospecting crew was mobilized from May 15th to September 30th. Field works were used to define high grade trends on existing stripping areas, extend known gold trends and improving the level of understanding on exploration targets. During this period, 434 chip samples from outcrops and 181 boulder samples were collected. 101 geological stations were established to validate different components of the geological context.

MONEXCO NO.1

The main Monexco No.1 structure commonly hosts east-west shear veins and occasionally fractured quartz-feldspathic porphyry dykes. Most sampling was done close to the dyke where oblique quartz-tourmaline veins cross cut the intrusion. 9 samples over 41 returned results between 1.0 and 26.9 g/t gold.

RIVIERE NORD

Seventy-one (71) samples were centered on the northern side of Rivière France in the direct extension of the Monexco No.1 gold showing. The stripping area returned 6 composite samples with grade between 1.0 and 6.1 g/t gold inside an area covering around 20 m along strike. The Rivière France shoreline sampling gave 11 samples with gold grade going from 1.1 g/t to 19.15 g/t. A new quartz-feldspathic porphyry dyke associated with mineralized quartz veins was identified about 35 m North of the Rivière Nord stripping with three bedrock samples which returned 2.3 g/t, 4.35 g/t and 9.5 g/t gold.

MONEXCO NO.3

The sampling was randomly distributed on the outcrop where north-south to north-east quartz-tourmaline veins of varied width and length are observed. Total of 63 bedrock samples were taken to cover an area making approximately 30 m X 50 m. 17 results returned grades between 1.1 g/t and 18.8 g/t gold and 16 samples cover the 0.1 to 1.0 g/t gold range.

VG

Total of 85 bedrock samples were collected in this environment dominated by two foliated metric quartzo-feldspathic porphyry dykes spaced out by about 20 m. Sampling returned 29 results above 1.0 g/t gold including 15 results between 12.4 and 81.8 g/t gold. Best results are systematically located inside 3 m from a continuous east-west south dipping foliated pink quartzo-feldspathic porphyry dyke. The orientation of individual veins shows a strong north to north-east grouping.

MOLY 1, MOLY 2

Exploration works done on the Moly 1 and Moly trench 2 aimed to confirm a third gold trend showing the same quartzo-feldspathic porphyry dykes and strong iron carbonate alteration as the main Monexco gold showing. A total of 20 bedrock samples and 35 boulders samples were collected inside an area making over 275 m along strike with a north-south influence of 200 m. An angular mineralized boulders field was found immediately east-south-east from Moly-1 trench. The sampling coverage returned three boulder results of 1.0, 3.15 and 8.25 g/t gold coming from a 2 m wide angular boulder.

MONEXCO EASTERN EXTENSION

Sampling sites possibilities decreased quickly outside stripping areas with the increasing thickness of overburden observed on both sides of the Rivière France valley. The area located a few hundred m north of Moly-2 stripping was prospected in detail to identify the northern limit of the Rivière France deformation zone typified by the quartzo-feldspathic porphyry dykes swarm. This target is extending over 500 m along strike for a north-south influence of 200 m. A massive pyrite lenses was discovered on a volcanic contact stripped manually over a strike length of 2 m. The host rock is a chloritized felsic volcanic. 89 samples were obtained from small outcrops and 69 glacial boulders were also sampled. A result of 3.5 g/t gold was obtained from the massive pyrite layer. The gold showing is surrounded by gold anomalous bedrock samples.

WEST PROPERTY AREA

This prospecting area goes westward from the Rivière Nord stripping to the western property limit, covering close to 2.1 km. On the north-south axis, the sampling coverage starts at the property southern limit and reach a northern property limit to give more than 1.6 km. 123 bedrock samples, 27 boulders samples and 10 river bed boulders were obtained from this area.

A deformation zone contact can be traced from about 400 m north of the southern property boundary where a mafic- felsic contact injected by quartzo-feldspathic porphyry dykes with

remobilized pyrite stringers was observed. The general east-west orientation of the main foliation is locally punctuated by quartzo-feldspathic porphyry dykes, quartz veining concentration and shearing. Angular boulders of altered quartzo-feldspathic porphyry dykes compose about 20% of the till boulders fraction. Two samples originating from old Soquem works returned 1.2 and 2.65 g/t gold.

EASTERN PROPERTY SAMPLING

Different prospection targets were identified first with the 2008 airborne magnetic and VLF survey using a combination of strong magnetic contrasts juxtaposed to conductors. In the property context, VLF conductors can be interpreted as graphite bearing sediments, strong sulfides concentrations or faults zones. The east-west to north-west trending regional trend offsets on north-east breaks were considered as potential targets for gold mineralization following the Monexco gold mineralization model. 31 samples were collected in this environment.

The property south-east corner hosts one of the few isolated gold values close to the 1 g/t threshold discovered during the program. Sample S279502 (0.98 g/t Au) came from a series of boulders. Lithologies sampled included amphibolitized basalt, quartzo-feldspathic porphyry dykes and massive to layered silicified host rock of unknown origin. The mineralized sample is of this last type.

MCCORKILL (Sigeom 32I04-1000 Lac France Est gold showing)

Most works were concentrated on the section covering the historical Lac France Est showing blasted trench. Different areas of interested were sampled inside the 300 m long stripping. Additional samples were taken where outcropping rocks are observed mostly along access road sides. Total of 109 samples were taken.

The McCorkill geological context was previously described and evaluated by Violette (2005), Beauregard (2003) and Violette (2002) where the land position was taken by Typhoon.

The sequence intercepted by the stripping is composed, from south to north, of fine grain flyshic sediments, sulfides rich graphitic sediments, iron formations, felsic tuffs and amphibolitized basalt. This transitional sequence is marked by strong ductile deformation and the injection of quartzo-feldspathic porphyry dykes, also recrystallized and possibly altered. Quartz veins with thickness passing from 1 to 10 m are located preferably close to dykes contacts.

The sampling concentrated on the stripping area returned one result of 1.3 g/t gold from a sulfide rich layer sampled north of the blasted trench. 8 samples returned gold grade between 0.1 and 0.8 g/t. An examination of the entire stripping highlighted the absence of historical sampling in most areas.

CONCLUSION AND RECOMMENDATIONS

The chip sampling done in 2015-2016 was used to better define high grade trends on 4 large stripping areas composing the Monexco gold showing. They define a 400 m long trend mostly extending east of Rivière France.

At a few dozen meters scale, gold shoots are mostly located where north-east (N040 to N065) east dipping fractures and minor faults intersect quartzo-feldspathic porphyry dykes. On Monexco No.1, No.2, VG, Molly 1, Molly 2, Montagne, Rivière Nord stripped areas, these high grades trends could be extended along strike outside actual stripping contours.

New significant gold values were also obtained about 60 m north of the Rivière Nord stripping in the same context as the main Monexco trend. The cluster of three values of 9.0 g/t, 3 g/t, and 2 g/t are associated with a quartzo-feldspathic porphyry dyke. Laterally, this gold signal can not be correlated to any other known trend. East of Rivière France, the Molly trend located around 150 m northward represents at that stage the upper north limit of the mineralized system. When considered at the property scale, this limit is at the same northing as the Soquem trench located 2.4 km westward.

This northern Monexco trend highlights the difficulty to circumscribe the extension of the gold system based only on the prospecting and trenching works. The density of outcrops decreased sharply outside the Rivière France valley. The boulder sampling started in 2016 has been of a great support to track potential gold structures.

The northern half of the property remains poorly exposed. Rhyolite and tuffaceous units associated with sediments are all marker of the Blondeau Formation, also well known to host a polymetallic sulfides potential. The Mc Corkill (France Est) gold showing identified about 500 m north of Monexco is hosted in similar massive pyrite lenses as the description made of the Pamac zone located about 4.5 km eastward in the same environment (Turcotte D., 2015).

In terms of methodology, the increasing sampling density on stripping areas has reached about 1 sample per square meter. The sampling database is composed of more than 1,500 located samples split in half between chip and channel samples. The combination of the two populations gives a cohesive gold distribution on map. Drill tests were done on Monexco No.1 and VG stripings using north-south or north-west trending drilling azimuths have intersected noticeable results that can influence our understanding of the Monexco gold system. A repetition of gold intervals in the 0.3 to 4.7 g/t range define a wide low grades envelope of north-east orientation where it intercepts the maximum thickness and complexities of the dykes swarm.

This result is significant and could indicate the potential for a large volume low grade deposit related to quartzo-feldspathic porphyry dykes swarms. Current sampling coverage still indicates that north-east striking veins are an important gold enrichment vectors.

Parallels can be drawn between the Monexco and the Gwillim Mine located a few km north of Chibougamau. The gold system is distributed inside a 500 to 600 meters wide envelope of ductile deformation and strong alteration centered on the north-east Gwillim Fault. The deposit

composed of hundred meters long mineralized lenses were mined down to a depth about 100 m. According to this model, Monexco higher grade shoots could follow the same staggered pattern correlated with quartzo-feldspathic porphyry dykes and north-east faults intersections. The progression of the gold system following the Riviere France north-east trend represents the property main exploration upside.

The context of the Technical Report was used to illustrate the wide range of geophysical surveys that covered the property over years. At surface, successive prospecting and sampling programs have exploited all outcrops possibilities. At this stage of the exploration process, drilling targets can be supported by compiling existing information. The next exploration objective should be investigating the potential for a large volume low grade deposit and testing local enrichment along north-east minor faults.

The follow up proposal is based on 5,000 m drilling program split in 16 holes planned to cover with minimal overlap the complete section and lateral extension of the Monexco showing.

N310 degrees direction might be the ideal drill orientation to intersect north-east or north-south to north-east fractures sets controlling most part of the gold enrichment. A few preparatory steps must be realized before reaching this goal.

- Quartzo-feldspathic porphyry dykes positions and stripped areas outlines should be surveyed to detect slight shift of orientation that may correspond to north-east detachments fractures.
- There is no geological base map available to describe the property with an acceptable level of precision. Confusing contacts and unsolved stratigraphy affect Monexco targets robustness. It is recommended to complete a clearer interpretation based on the integration of historical data.
- Logistically, the program should be supervised on the field to be able to re-orient quickly drill objective in function of observations. The budget model proposed is based on a core return at the Typhoon Exploration base located in the Mont-Brun district, town of Rouyn-Noranda, to complete the core logging and sampling. Transportation cost evaluated at \$10/m is more economic than absorbing additional location and logistical cost close to the project. An overall cost of \$178/m is evaluated for the whole program split between contractor cost (\$100/m), logistics (\$38/m) assaying (\$20/m) and human resources (\$20/m).
- The entire evaluation program cost is evaluated at \$937,000 from targeting works to reporting.

Table 1

MONEXCO DRILLING PROPOSAL	Unit	Unit cost	Qty	Total	Details
Target modelling	Day	\$ 500	20	\$ 10,000	Data assemblage on a unique platform (geology, geophysics, drilling)
Program preparation	Day	\$ 750	10	\$ 7,500	Logistic and physical organization
Drilling Program	m	\$ 176	5000	\$ 890,000	5,000 metres split in 16 holes
Drafting and Reporting, 43101 report update and assessment	Day	\$ 500	60	\$ 30,000	43-101 Technical Report update and assessments
TOTAL				\$ 937,500	

Table 2

Drilling Program Items		Unit cost	Qty	Total	
Surveying	m	\$ 2	5000	\$ 10,000	Targets location
Drilling contractor	m	\$ 100	5000	\$ 500,000	Split in 16 holes averaging 312 metres
Access preparation	m	\$ 10	5000	\$ 50,000	Access construction
Assaying	m	\$ 20	5000	\$ 100,000	About 80% core length assayed
Transport	m	\$ 10	5000	\$ 50,000	Core transportation from field to Typhoon Mont-Brun base
Field Logistic	m	\$ 6	5000	\$ 30,000	Room and Board
Human Resources	m	\$ 20	5000	\$ 100,000	Geologist, technician, helpers
Material Location	m	\$ 10	5000	\$ 50,000	Based on 2 months operation
TOTAL		\$ 178	5000	\$ 890,000	

2. INTRODUCTION AND TERMS OF REFERENCE

2.1 Recipient:

The Technical Report on the Monexco property was prepared in accordance with the National Instrument 43-101 at the request of Typhoon Exploration Inc ("Company", "Issuer"). The Company is a junior exploration company, founded in the Province of Quebec in 1998, based in Laval, Québec, and listed on the TSX-V under the stock symbol "TYP".

The report follows the previous Technical Report filed in 2008 (Rapport technique NI 43-101 de la propriété Monexco, canton McCorkill, Chibougamau, Québec by Beauregard A.J. and Gaudreault D.), which described mechanical stripping works and drilling performed between 2004 and 2008 on the Monexco property.

Following report contains new information from prospecting and sampling works done on the property during 2015 and 2016. It compounds all other relevant data coming from historical assessment files and from the Issuer internal files used to prepare previous technical reports.

Martin Demers P.Geo. OGQ #770 ("the Author") started to work on the Monexco project during May 2016 and visited the project at different period between May and September 2016.

2.2 Introduction and Objectives:

The main objective of this report is to present and integrate recent exploration data generating by 2015-2016 exploration campaign on the Monexco property to the body of data obtained from previous programs done during a period going from 2004 to 2011.

The goal expected by Typhoon is to be able to release technical information properly for the profit of the shareholders.

The report will report more specifically on following aspects on the Monexco exploration project:

- Inventory and review of historical exploration works done on the property. Compilation of sampling coverage and results coming from the different exploration programs done by Typhoon from the beginning of the company involvement with the Monexco property.
- Description of the geological context and gold mineralization of the property.
- Disclosure of new sampling results done after 2008.
- Discussion about the gold potential evaluation and ways to address future exploration works.

2.3 The Monexco Project: Exploration Background

Recent, as historical information has demonstrated particularities of the Monexco property environment to support the gold potential.

- The Monexco property encloses the Rivière France north-east lineament over a distance of about 4.8 km. This lineament intersects two main gold bearing regional structures: the Faribault Fault putting in contact the upper portion of the Gilman Formation with the Blondeau Formation to the north, and the Rivière France corridor developed inside the Gilman Formation.
- The Monexco gold system is enclosed inside the Rivière France corridor. Mineralization, even not connected are extending along strike for about 400 m with a north-south influence of about 400 m.
- A superimposition of geological indicators is observed at different scales on stripped areas: gold bearing quartz-veins are hosted in ductile high strain zones with strong iron carbonate alteration and east-west trending quartzo-feldspathic and lamprophyric dykes.

Since 2011, the Issuer executed different phases of works mostly concentrated on the Rivière France stripped areas. With the help of different exploration approaches such as IP and soil surveys, stripped areas were extended and sampled with the result to extend the influence of the Monexco system southward and north-eastward. The prospective area includes now 12 main trenches all considered inside the Rivière France gold bearing corridor.

The 2015 program aimed to expand the Monexco area using a combination of airborne VLF and magnetometric surveys combined with structural modelling. The blind targets generated opened prospective ground more than 1 kilometer westward and along strike with Monexco gold occurrences. This structure covering the upper Bruneau Member of the Gilman Formation is identifiable by a concentration of quartzo-feldspathic dykes enclosed in a ductile high strain zones system. In this context, gold mineralization is mainly related to quartz-carbonate veins network closely associated with strong iron carbonate alteration zones.

In 2016, following the conclusion of a geological study initiated by the MERN, (Énergie et Ressources Naturelles Québec), "Analyse structurale de la zone de cisaillement de la Rivière France et de ses minéralisations aurifères, région de Chibougamau, Québec by Vézina C. et al., MB2015-04", a close space systematic sampling was done on main mineralized outcrops to test the dominant effect of north-east fractures on the gold enrichment. As for the 2015 program, 2016 exploration works targeted gold mineralization indicators that could support the extension of the gold system outside the Monexco gold showings area.

Also, the northern part of the property (initially called the “McCorkill property”) was re assessed using as starting point the historical France Est gold showing trench. This area is part of the Faribault Fault corridor.

2.4 Disclaimer

Historically, and until 2008, most exploration focused on sub-outcropping areas bordering the Rivière France. That area, after becoming the Monexco gold showing, was intensively trenched and sampled. Field visits highlighted multiple episodes of mechanical stripping, channel sampling, and even bulk sampling obtained by blasting. This apparent mass of information is not necessarily compiled and released in assessment files, either in other documents transmitted by previous owners.

From a technical point of view, the report presents the specific issue of geo referencing all information coming from varied sources. In context, mapped information from a grid can co exist with handhelds GPS recorded data. The inherent uncertainty of this category of GPS device stands in the 3 to 15 meters range. Consequently, it can encompass outcrops dimensions at such a point that a confusion appears between the level of cartographic precision and samples position.

From a geological stand point, the property is located at the eastern limit of the Chibougamau Mining Camp geological area, where the general tectonic style passed from a major east-west control to a north-south trend influenced by the Mistassini basin and the Grenville Front. East of Rivière France, the stratigraphy is hardly interpreted on official maps, cut in blocks by northerly faults and fractures. The four geological map sheets of the SIGEOM system touching the property (32H13, 32G16, 32I04, 32J01) are uncomplete with map contacts not fully resolved. It was not within the mandate of this report to rebuild and assess the geological framework of the property. Otherwise, observations and structural measurement will be presented to support sampling.

3. RELIANCE ON OTHER EXPERTS, SOURCE OF DATA AND INFORMATION

The author acknowledges Daniel Gaudreault Ing. And Alain Jean Beauregard P.Geo. from Geologica inc., data manager and author of previous reports done on the property since 2003. Mr. Gaudreault was in charge and supervised works carried out on the field during the 2015 season. Mrs. Gaudreault and Beauregard are *Qualified Person* as defined by National Instrument 43-101 (“NI 43-101”), and they are also an independent of Typhoon Exploration Inc.

The Issuer made available all information attached to the projects including items:

- Field notes locating channel samples
- Cad drawing of stripped areas showing geological mapping channel samples traces
- Original GPS files for the 2015 programs
- Channel samples compilation of 2004, 2007 and 2008 programs
- Drilling database and Excel sheets of 2004 and 2011 drill programs
- Geophysical reports with raw numerical data
- Soil geochemistry report
- Mining Titles status report
- All information concerning property mining titles list is managed externally by Gestion Noriod Inc. Information match in all point the MERN Gestim platform.

The Author is involved as an independent consultant and *Qualified Person* on the project since May 2016.

The Author is not aware of any litigation that may be material to the Monexco project, nor are there any undisclosed understanding concerning any future corporate development issues.

A total of 19 days was passed on the field from June to September 2016 to overview the sampling work, and to acquire sufficient geological data to support the sampling context.

Period From:	Period To:	Days
May 30 th 2016	June 4 th 2016	6
June 13 th 2016	June 17 th 2016	5
July 21 th 2016	June 24 th 2016	4
September 27 th 2016	September 30th	4

Quantities presented in the Technical Report are consigned in International System of measurements (SI) by their abbreviations: km (kilometer), m (meter), m² (square meter), mm (millimeter), µm (micron or micrometer), t (tonne), kg (kilogram), g (gram), mg (milligram), nT (nanotesla), mV (millivolts).

Gold results are reported in ppb (part per billion), ppm (part per million), or their equivalent in grams per tonne.

Other abbreviations of administrative entities are clarified in the text.

4. PROPERTY DESCRIPTION AND LOCATION

4.1 Area

The property is composed of a single block of 42 contiguous claims representing about 2,324.02 hectares. The property is centered on the following coordinate: 573 000 m E and 5,539,500 m N in the UTM NAD83 Zone 18 projection system. Four NTS sheets intersect the property outline: 32G16, 32H13, 32I4 and 32J01.

4.2 Location

The property is located at about 30km north-east of the town of Chibougamau in the James Bay municipality, of the Nord du Québec administrative region. Chibougamau is located at 525 km by road from Quebec City via Ville Saguenay.

FIGURE 1 : MONEXCO PROPERTY LOCATION

4.3 Mineral Tenure

The property is composed of designed cells originating from the Gestim provincial mining titles managing systems. On January 1th 2017, the claims were recorded under the name of "Exploration Typhon inc.".

The anniversary expiration and renewal dates are unique for the entire claims map. Next ones are respectively September 7th 2019 and August 8th 2019. Before presenting 2015-2016 works, the property held a cumulate excess of exploration credits \$ 378,462 compared to required expenditures \$68,250 for the next term. The distribution radius of 4.5 km allows to cover completely the property with actual credits.

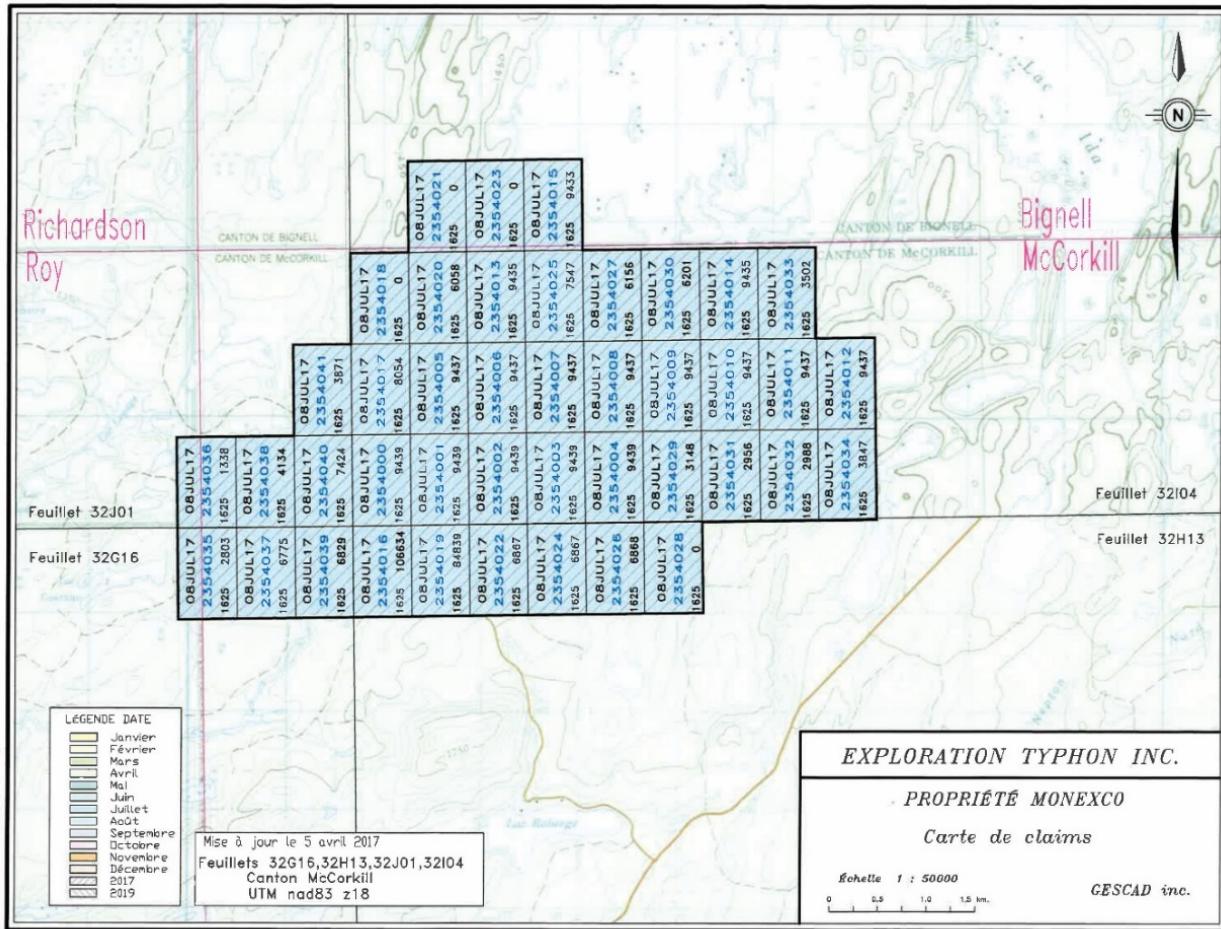


FIGURE 2 : MINING TITLES MAP. SOURCE: GESCAD INC.

MONEXCO PROPERTY CLAIMS MAP

Jan 31th 2018 update

Source: Gestim (gestim.mines.gouv.qc.ca)

NTS	TITLE	OWNERSHIP	EXPIRATION	RENEWAL	RENEWAL FEES	REQUIRED	RESERVE
32I04	CDC2354000	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,814.79
32I04	CDC2354001	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,814.79
32I04	CDC2354002	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,814.79
32I04	CDC2354003	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,814.79
32I04	CDC2354004	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,814.79
32I04	CDC2354005	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354006	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354007	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354008	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354009	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354010	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354011	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354012	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,812.63
32I04	CDC2354013	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,810.47
32I04	CDC2354014	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,810.47
32I04	CDC2354015	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$7,808.31
32H13	CDC2354016	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$98,223.13
32I04	CDC2354017	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$6,429.65
32I04	CDC2354018	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$0.00
32H13	CDC2354019	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$83,214.48
32I04	CDC2354020	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$4,433.93
32I04	CDC2354021	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$0.00
32H13	CDC2354022	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,242.99
32I04	CDC2354023	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$0.00
32H13	CDC2354024	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,242.99
32I04	CDC2354025	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,922.63
32H13	CDC2354026	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,243.00
32I04	CDC2354027	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$4,531.02
32H13	CDC2354028	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$0.00
32I04	CDC2354029	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$1,523.42
32I04	CDC2354030	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$4,576.33
32I04	CDC2354031	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$1,331.40
32I04	CDC2354032	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$1,353.77
32I04	CDC2354033	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$1,877.77
32I04	CDC2354034	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$2,222.98
32G16	CDC2354035	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$1,178.21
32J01	CDC2354036	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$0.00
32G16	CDC2354037	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,150.23
32J01	CDC2354038	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$2,509.41
32G16	CDC2354039	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,204.17
32J01	CDC2354040	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$5,799.65
32J01	CDC2354041	Exploration Typhon inc. (100%)	07/09/2019	08/07/2019	\$64	\$1,625	\$2,246.19

TABLE 1 : MINING TITLES MANAGEMENT TABLE

4.4 Nature and Extent of the Issuer's Title

This issuer detains an interest of 100% on mining titles, free of any encumbrance excluding 1.5 % of Net Smelting Return to a private party. Mining claims cover public land open to mining

activities. The Cree Nation is the other stakeholder. The trap line 057 related to the community of Ouje-Bougoumou encloses the property.

Mining titles of the property are part of Category III ground of the Eeyou Istchee Territory which southern limit correspond to the 51th parallel.

The James Bay Agreement and the Peace of the Braves agreements between the Government of Quebec and the Cree Nation guarantee an access to the territory to develop mining properties in exchange of sharing development principles (Agreement Toward a New Relationship (Agreement Paix des Braves, 2002)).

The Agreement creates an incitation to contact the Cree Mineral Board which acts as an entry door to the Cree Nation administration.

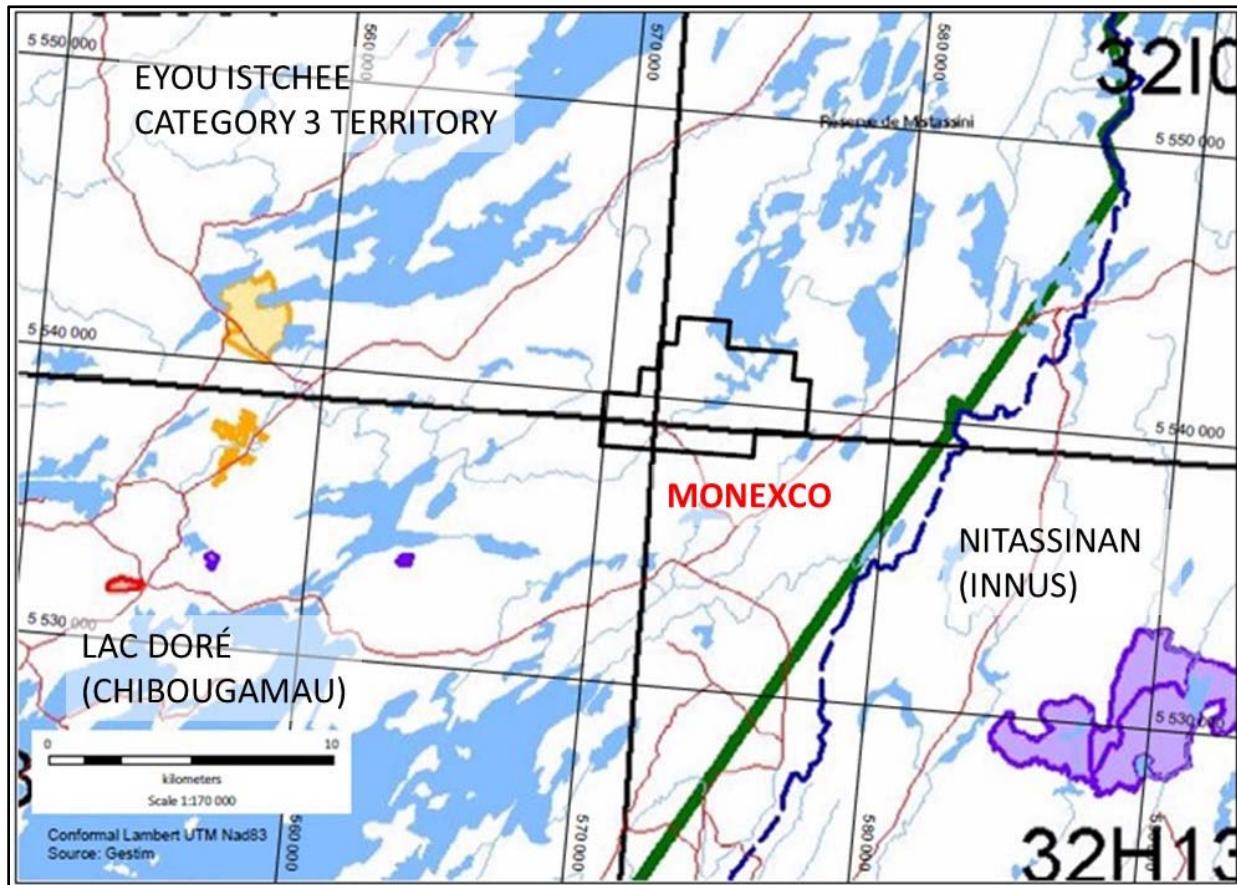


FIGURE 3 : CHIBOUGAMAU REGION INSIDE THE EYOU ISTCHEE CATEGORY 3 TERRITORY OF JAMES BAY AGREEMENTS WITH RESERVES TO EXPLORATION CORRESPONDING TO RED, ORANGE AND PURPLE AREAS.
SOURCE: GESTIM.MINES.GOUV.QC.CA

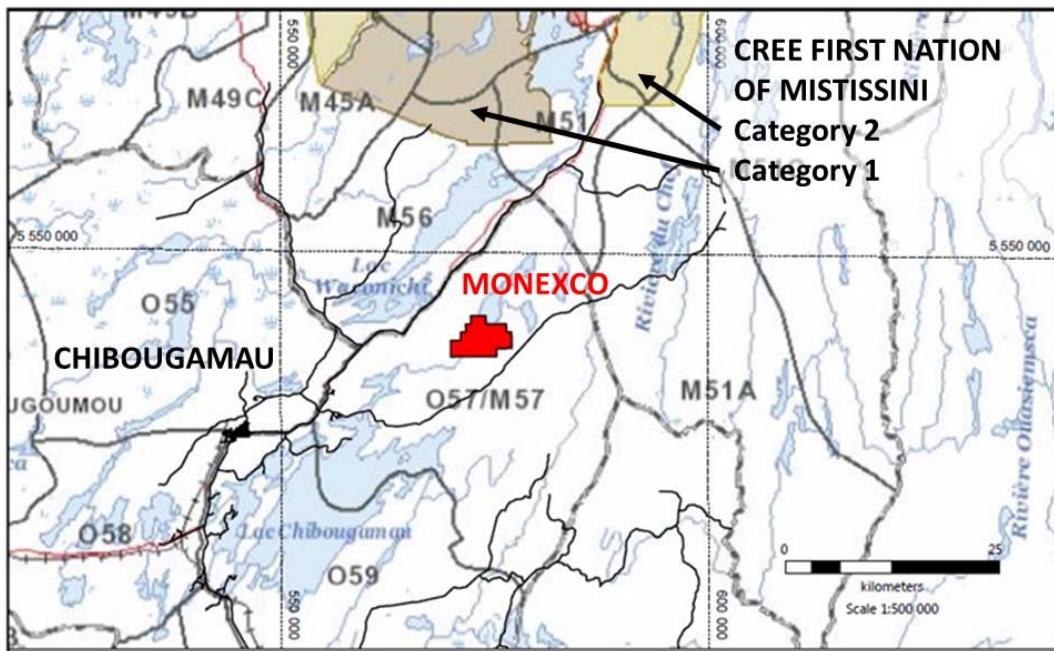


FIGURE 4 : POSITION OF THE MONEXCO PROPERTY INSIDE THE CREE NATION TRAPLINES MAP. SOURCE: [HTTPS://APPS.CREEGEOPORTAL.CA](https://apps.creegeoportal.ca)

4.5 Agreements and Royalties

42 mining titles making the property were acquired by the Typhoon through a buy out agreement which includes 1.5% Net Smelting Return to a private party. The Author is not aware of the legal status of the agreement with the previous owner.

The Author and the Issuer are not aware if any other activity can represent a risk or factors that can restrict access, titles, or the right of Typhoon Exploration to undertake exploration works.

4.6 Environmental Liability

Any mining or other type of industrial activity took place on the property. The human footprint is restrained to temporary hunting and fishing camp. At the best of our knowledge, there is no identified savage sites of waste disposal, related or not to past exploration activities.

4.7 Required Permits

Current exploration works generating a ground impact and lumbering activities such as mechanical stripping and trenching, access road construction and drilling are done under the Québec forest regime managed by the Forest, Wildlife et Parcs Ministry. The application of the Sustainable Forest Development Act is made using the standard regulation "RNI" for "Règlement sur les normes d'intervention dans les forêts du domaine de l'état" (www.mffp.gouv.qc.ca)

- A permit is granted for exploration works according to drawings and specification inside a yearly calendar closing in March.
- An estimation of the wood volume related to each permit is done and valuation stumpages right is paid to the Province.
- The respect of technical parameters promulgated in the "RNI" regulation during exploration works is under the responsibility of the company holding mining titles. The wildlife habitat, fishing habitat, water quality, drainage integrity, watersides ecotones and humid areas are particularly targeted by the regulator.

Exploration works create local disturbance in the natural environment, which could interact with provincial and federal legislations. Should exploration advancement triggers environmental protection regulations under the responsibility of the Québec Ministry of Sustainable Development, Environment and the Fight Against Climate Change ("ministère du développement durable, de l'environnement et de la lutte contre les changements climatiques" or MDDELCC), audit procedures are in place to grant a certificate of authorization before proceeding with the works schedule.

The following list is an overview of environmental regulation components applying to exploration projects (http://www.mddelcc.gouv.qc.ca/publications/lois_reglem.htm).

Legislation	Law interacting with an exploration project at the grassroot stage
Federal	Species at Risk Act
Federal	Fisheries Act concerning fish and fish habitat
Provincial	Environmental Quality Act
Provincial	Act respecting threatened or vulnerable species
Provincial	Act to affirm the collective nature of natural resources and provide for increased water resources protection.

4.8 Risk Factors

Access to the Territory

The property is enclosed inside the Albanel - Mistassini - Waconichi Lakes Wildlife Reserve, a management unit included inside of Category 3 territory under the James Bay Agreement.

The status attached to this type of land management does not include any limitation to proceed with exploration or mining development. Otherwise, in accordance with the "Paix des Braves agreement", the Cree Nation of Mistissini will become the only manager of the territory, effective since 2017 Avril 17th. The Reserve was initially established around the Mistissini Cree Nation to oversee the exploitation of faunistic and halieutic resources. The newly constituted Nibiishi Corporation will have the mission to constitute a new conservation park and to maximize commercial and touristic activities.

(<http://ici.radio-canada.ca/nouvelle/1027956/cris-mistissini-gestion-reserve-faunique-des-lacs-albanel-mistassini-et-waconichi>).

According to social and environmental impacts briefs submitted to support the Albanel-Temiscamie-Otish national park establishment, the Monexo property area is not part of the preservation area (www.mddelcc.gouv.qc.ca).

Community relations

The project is not actually managed under a specific exploration agreement with the Cree Nation of Mistassini. First contact should be made with the Cree Mineral Board and the Crees Trappers Association (CTA) to insure the communication level required by the James Bay agreements.

In a scenario where the project is moving forward at a more advance exploration stage, a Impacts and Benefits Agreement (IBA) will have be signed with Cree authorities to insure a tighter collaboration.

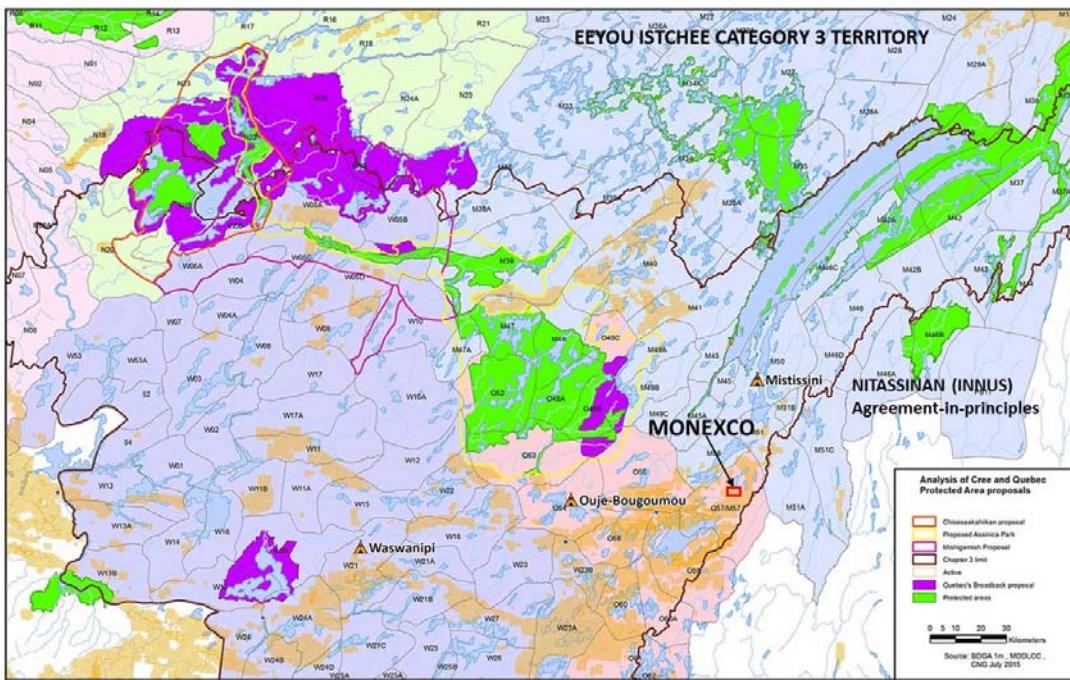


FIGURE 5 : POSITION OF THE MONEXCO PROPERTY INSIDE THE QUEBEC-CREE ENVIRONMENTAL PROTECTION STRATEGY FOR THE RUPERT RIVER WATERSHED. ORANGE: CLAIMS MAP, GREEN: PROTECTED AREAS, YELLOW: EXPANSION PROJECT. SOURCE: [HTTP://WWW.EEYOUCONSERVATION.COM/BROADBACK-WATERSHED-CONSERVATION-PLAN.HTML](http://WWW.EEYOUCONSERVATION.COM/BROADBACK-WATERSHED-CONSERVATION-PLAN.HTML)

Environment

The property encloses the head of Rivière France, and the outlet of Lac France. Compared to the more important neighbouring Lac Waconichi located 10 km westward, the Lac France is a small component of the hydrographic system tributary of Lac Doré. It remains that Rivière France is a productive fish habitat with numbers of spawning areas.

To date, with all reserves, exploration sites show no sign of unconformity in regards of the provincial Environment Quality Act regulations and other corresponding Federal Acts as listed in section 4.7. Even if stripped areas are located on both sides of Rivière France, riparian bands have been maintained. Any sign of erosion due to exploration impacts like particulate matter in water was observed, even during the high tides period. Also, any exploration artefacts (fuel, abandoned equipment, savage disposal) coming from the different exploration phases which have impacted the property area were encountered on the field.

The erosional stability of the area combined with a strong natural revegetation gives the indication that the territory can support exploration works while following best environmental and forestry practices.

Otherwise, recreational and traditional fishing and trapping activities live together on Rivière France. From one side, users create a significant environmental pressure which is visible on the

field by shorelines deforestation, trail opening and cabin construction. This type of human activity exceeds today the current impact level of exploration works. On the other side, more intensive exploration will put additional stress on actual infrastructures. The Albanel-Mistassini-Waconichi Lakes Wildlife Reserve maintains minimal infrastructures such as a woodbridge on the Rivière France and gravel road accesses.

FIGURE 6 : EXAMPLES OF PRE TYPHOON EXPLORATION ENVIRONMENTAL IMPACTS ON THE PROPERTY. LEFT, BOAT ACCESS FITTED OUT BY THE WILDLIFE RESERVE OF ALBANEL-MISTASSINI-ET-WACONICHI LAKES RESERVE. RIGHT, BLASTED OUTCROP FROM LATE EIGHTIES EXPLORATION ACTIVITY.

5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURES AND PHYSIOGRAPHY

5.1 Accessibility

The property is part of the Albanel-Mistassini-Waconichi Lakes Wildlife Reserve. Access to the property from the town of Chibougamau is made by provincial road 167 joining the Mistissini Cree Community. About 20km north of Chibougamau, the forestry road A-11 is followed to the east on 34.5 km until a north to north-west intersection with a secondary gravel road is reached. This access connects with Rivière France and stripping areas.

There are limited infrastructures and human footprint on the property. Most of the solid roads network has more than 10 years. It ensures that accesses are regrowth and require a mechanical brushing to be used by road vehicles. The closest industrial electrical power line is located outside the town of Chibougamau to deserve saw mill and former mines sites around Lac Doré. The closest line is at about 25km from the center of the property.

5.2 Physiography, Drainage, Topography, Vegetation

The landscape of the property is made of low rolling hills with altitude varying between 500 and 550 m elevation, squeezed between the Grenville Front located 8km to the East, the Chibougamau depression to the South and the Mistassini Lake drainage system to the West and North.

The main topographic feature of the property is the Rivière France valley which crosses the property following a south south-west drainage direction toward Lac Doré. The river takes its source in Lac France at the property northern limit. The valley is relatively narrow with a maximum width of 500 m. The maximum head drop is around 100 m with a river bed upper mark close to 420 m elevation at the lake discharge, and a lower mark at 400 m elevation, 4.5 km downstream at the southern property limit.

The Rivière France drainage is part of the Nottaway River watershed. Less than 10 km west, the Waconichi Lake is at the head of the Lac Mistassini basin and at the head of the Rupert River watershed.

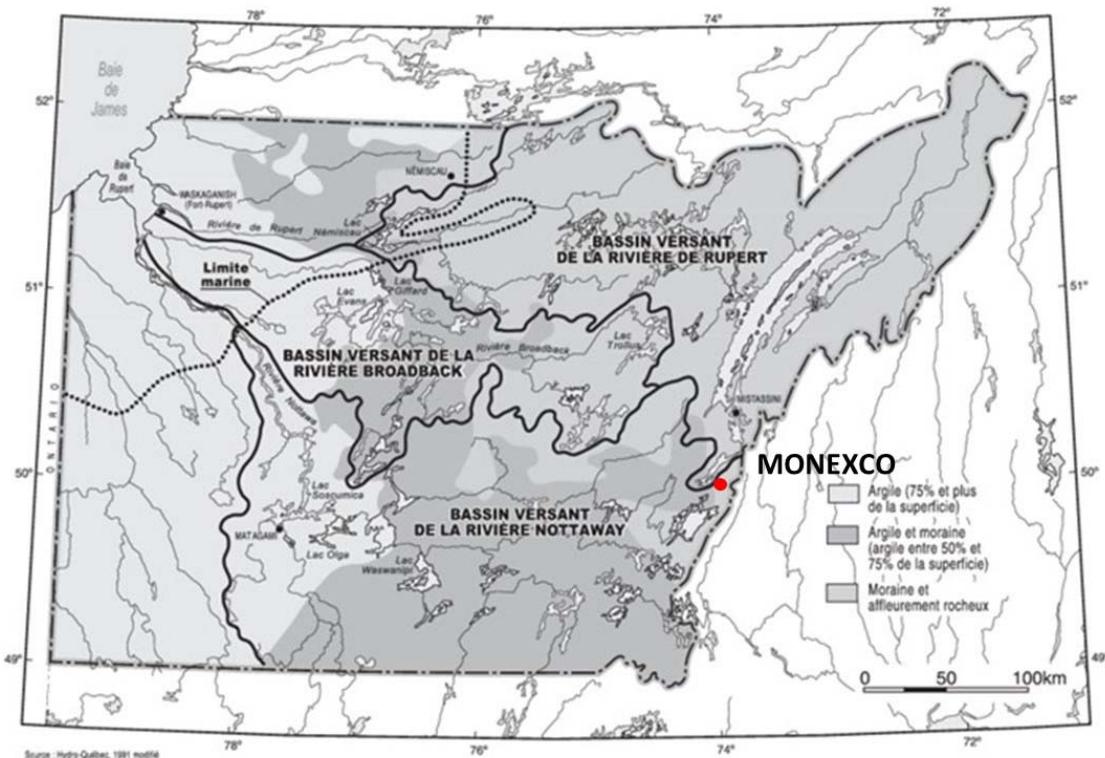


FIGURE 7 : POSITION OF THE MONEXCO PROPERTY AT THE HEAD OF THE NOTTAWAY RIVER WATERSHED.
SOURCE: ST-LAURENT, D., 1999.

The region enclosing the property was actively harvested during the last decades, mainly on the eastern side of Rivière France with the result to change dramatically the forest composition. The natural regrowth forest on harvested areas is composed of a mix forest dominated by trembling aspen and balsam poplar. Lumbering trails are mostly regrowth in non-commercial deciduous species such as black cherry or green alders. The western bank of the river was less touched by lumbering activities with forest cover made of mature black and white spruces with jackpine on higher areas. Moss spruce, lichen spruce and bugs are also present.

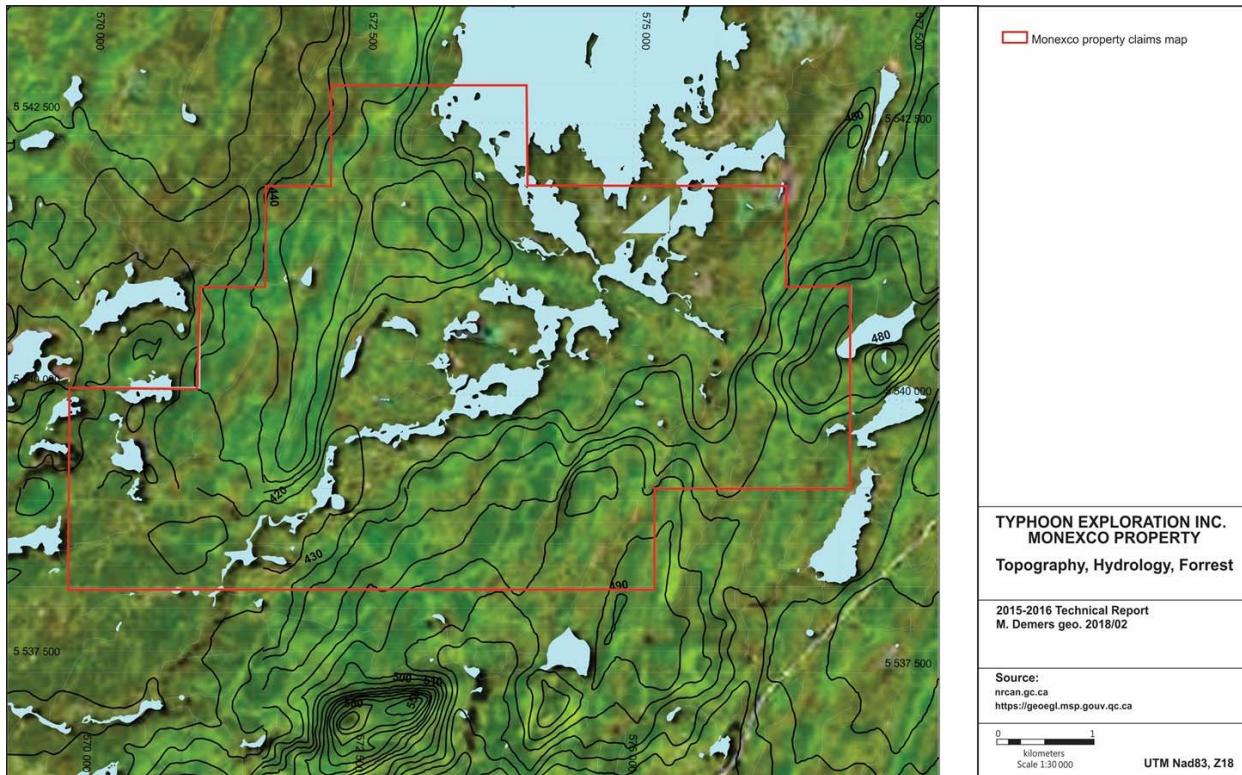


FIGURE 8 : VALLEY TOPOGRAPHY COLLECTING RIVIÈRE FRANCE. PALER GREEN AREA CORRESPONDING TO HARVESTED FOREST.

5.3 Infrastructures and Local Resources

The Town of Chibougamau with 7,550 habitants is the main urban locality of the James Bay Municipality. The town beneficiaries from its location as a transit toward Lac St-Jean, Abitibi and James Bay communities. It has favored the development of health care and social services, banks branches, and varied retailers.

The lumbering industry is the main industrial pole with the Chantiers Chibougamau sawmill. Auxiliary services like industrial welding and heavy equipment mechanics deliver services have a storefront in town.

Even if underground mining has stopped in the Chibougamau mining camp early 2000, skilled workers are still active in remote mines sites like the Renard Mine of Stornoway Diamonds located 300 km far north.

5.4 Climate

Temperature variations recorded in the Chibougamau area (Chapais station) between 1971 and 2010 showed a continental temperate climate with wide seasonal temperature ranges. The yearly average temperature is 0.2°C . The July average temperature is 16.4°C while January is -18.8°C . Recorded historical extreme minimum and maximum temperatures are respectively of -43.3°C and 35.0°C . The freezing point frequency is 213 days per year. The region is under -30°C during an average of 18 days per year.

The average annual precipitation is 995.8 mm split between 3130 mm of snow and 684.5 mm of rain. Source: <http://climat.meteo.gc.ca>

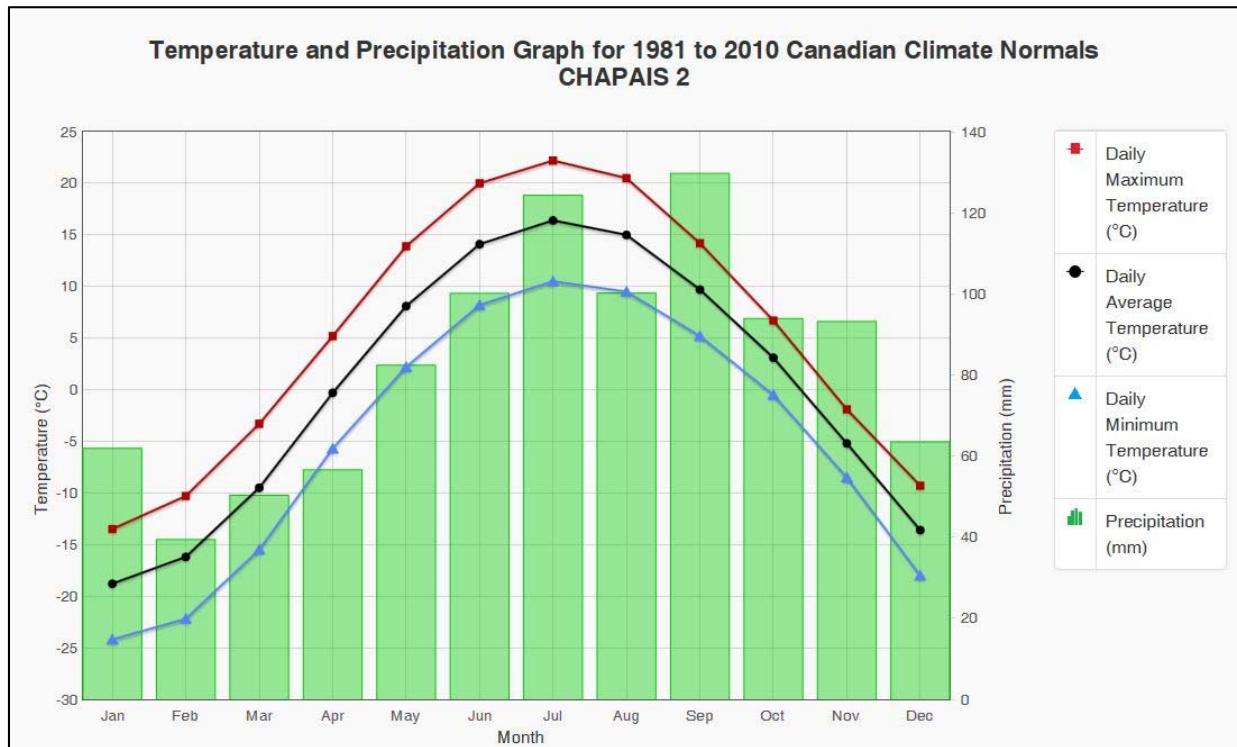


FIGURE 9 : AVERAGE MONTHLY TEMPERATURE AND PRECIPITATION GRAPH FOR THE CHAPAI STATION LOCATED ABOUT 65KM FROM THE MONEXCO PROPERTY CENTER. SOURCE: [HTTP://CLIMAT.METEO.GC.CA](http://CLIMAT.METEO.GC.CA)

6.0 HISTORY

6.1 Exploration Works Prior to 2003, or Before Typhoon Ownership

A large amount of exploration assessments works was filed by companies which worked in whole or in part the Monexco property over years. 58 reports with contents easily located inside the actual property limit were regarded as significant for the Technical Report. Surfaces affected by these exploration works were outlined, the varied surveys technical parameters with their results were evaluated to see their impact on the discovery potential for gold and base metals deposits.

6.1.1 Exploration Works, 1950-1959

Windward Gold Mines covered the upper portion of Rivière France. A self potential survey highlighted a 500m wide corridor where numbers of conductors were detected over a strike length of around 2 km. Targets orientation varies from east-west to north-west, controlled by the shape of the France Lake Pluton (Ogden P.A., 1956). A Loop Frame EM survey was performed on conductive areas to evaluate their relative size, source and geometry.

Lac France Pluton contour with surrounding felsic tuffs and sediments was mapped in detail. Early workers noted the potential unconformity position of this context compared to known mafic sequences located southward. The discovery of the Mary's Lake showing (now Lac Duquette Nord showing) located approximately 2.8 km east of Rivière France occurred during this period, giving the indication of a base metal potential. The discovery trench is located 200 meters east of the eastern Monexco property boundary. From a program of ten holes drilled by Windward Gold Mines during 1956, ddh #8, #9 and #10 were drilled on conductors located inside the actual property limit, at less than 300 m from Rivière France. The company abandoned the property after this program.

Westville Mines Ltd. held briefly 10 claims west of Rivière France during the same period. A loop base electromagnetic survey method was done at 120 m spacing. One weak East-west conductor was identified about 1 km south-west of Lac France.

Defor Chibougamau Mines Ltd. held 15 claims in an area bordering the western side of Lac France, centered on the boundary between McCorkill and Bignell township. Nine miles (9) of east-west lines were cut at 120 m spacing for a magnetometric survey. Results highlighted the north-south structural trend developed about 300 m west of Lac France Pluton. Harris (1956) described the mineralization context composed of massive pyrite-pyrrhotite lenses located on a sheared contact between a carbonate-sulfides "tuff" layer and amphibolite, trending north-east with 045° dip. Sulfides mineralization returned locally copper grades in the range of 0.1 to 0.7% according to the author. Quartz veining associated with strong shearing and pyritization

over pluri-metric widths was described but not accurately located along the structure. In all cases, assaying for gold was not mentioned.

Gold was discovered on the Monexco property by A.L. Oakley in 1958, prospecting for Obalski (1945) Ltd. on a rocky point located on the western side of the Rivière France (ref. GM-10133). Following the discovery, different works were executed: ground EM survey, stripping and trenching, sampling, geological mapping. During 1958, Obalski did an extensive self potential survey at an average spacing of 60 m centered on Rivière France. Detailed interpretation by manual contouring highlighted N040 ° and N060 ° structures identified by slight rotations of the regional east-west regional fabric. A first test hole of 38.6 ft (11.8m) was drilled in 1959. Fundamental features of Rivière France gold mineralization model were identified at that time like the east-west shearing intruded by quartz-feldspar porphyry dykes, iron carbonatization and tourmalinization associated with quartz veining. Observations done at the time by a grid of trenches cross cutting gold showing had identified a 18 m wide carbonatized rocks unit hosting gold rich quartz veins in contact with a south dipping quartz-feldspath porphyry dyke. Best grades were obtained where north-easterly minor faults intersect east-west shearing (Pudifin A.D., 1959).

Obalski executed a magnetometric survey and a self potential survey at a spacing of 300 feet (90 m). The purpose of the survey was to identify geological structures associated with the gold system outlined. The map produced showed discontinuous zones of high mag coincident with gold mineralization. Numerous anomalies were identified as potential targets. The company drilled a total of 5 holes totalling 302 m and abandoned the property. Picard (1981) reported 14 drill intervals showing results varying between 0.01 to 0.38 opt gold (0.3 to 11.8 g/t gold) over core length of 1.0 to 2.3 feet (0.3 to 7.5 m).

Rio Tinto Canadian Exploration optioned briefly Lac Roberge asbestos project located about 1km South of the Rivière France gold showing. The extension of mapping and compilation works done embraced the actual Monexco property limits. Maps produced clearly identified a series of parallel north-east faults which could be extended on both side of Rivière France.

Year of publication	Claims owner, Reference	Summary of Works	Exploration Input
1956	Queen Chibougamau Mines Ltd., GM 04467-A-B	Ground electromagnetic survey.	Moderate intensity conductor detected close to the actual property southern limit.
1956	Windward Gold Mines Ltd., GM 04484	Loop Frame electromagnetic survey.	Identification of strong conductor inside a 6km long structure.
1956	Windward Gold Mines Ltd., GM 04609-A	Report on geological survey (mapping, trenching and sampling).	Mary's Lake (Lac Duquette showing) discovery.
1956	Windward Gold Mines Ltd., GM 04609-B	Reporting about EM anomalies, geology and diamond drilling in the upper Rivière France area.	500 m wide conductive corridor defined south of Lac France. Holes #8, #9, #10 drilled inside Monexco property.
1956	Westville Mines Ltd., GM 04873	Ground loop base electromagnetic method.	Conductor identified approx. 1.2km south-west of Lac France.
1956	Defor Chibougamau Mines, Bignell Mines Ltd., GM 04875	Magnetometry.	North to north-west oriented strong magnetic relief south-west of Lac France.
1956	Defor Chibougamau Mines Ltd., GM 04944	Evaluation report on geophysics and trenching.	Sulfides mineralization identified.
1958	Obalski (1945) Ltd., GM 15049	Ground geophysics: self potential.	Identification of north-east structures.
1959	Obalski (1945) Ltd., claims Hutton., GM 08807	Drilling. Ddh #1(38.6 ft.).	Weak mineralization obtained: tr to 0.04 opt gold from 14 samples.
1959	Obalski (1945) Ltd., GM 10133	Trenching: sampling and mapping over an extension of 1,400 ft. (326m).	Mineralization model established.

TABLE 2 : ASSESSMENT REPORTS FILED BETWEEN 1950 AND 1959 ON THE MONEXCO PROPERTY.
SOURCE: SIGEOM.MINES.GOUV.QC.CA

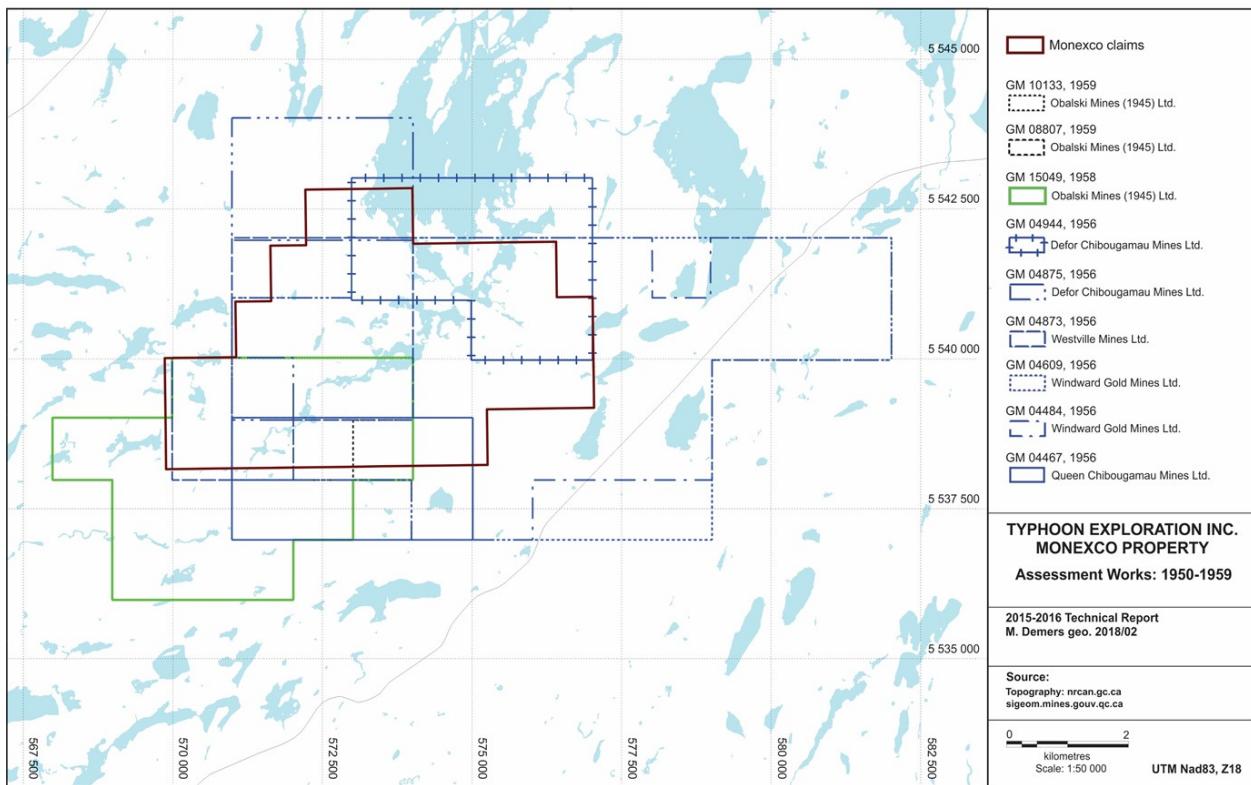


FIGURE 10 : MONEXCO PROPERTY WITH ASSESSMENT WORKS FILED BETWEEN 1950 AND 1959.

6.1.2 Exploration Works, 1960-1979

The Chibougamau Prospecting Syndicate staked the Monexco showing area in 1979. The following year, the property was transferred to Monexco Resources Ltd. Two ground electromagnetic surveys were done on the eastern part of the actual Monexco property. The objective was to specify airborne INPUT MARK VI EM anomalies identified by the Provincial Government survey in 1972. Magnetic data obtained in parallel illustrated the potential correlations between high magnetic anomalies and pyrrhotite concentrations. According to Salamis C. (1974), the Lemoyne VMS gold and base metals deposit discovered in the Lemoyne Township was a direct result of ground follow up on 1972 anomalies. Further verifications of numbers of conductors by trenching identified graphitic layers in the Waconichi Formation. Ten (10) of the 21 targets identified by the survey were evaluated as potential massive sulfides. Eleven (11) holes were drilled for 1,142 m. In all cases, graphitic material in association with pyrrhotite explained EM anomalies. The lecture of core logs with eyes of today indicates occurrence of grey felsic dykes possibly associated with strong deformation described as tuff and iron carbonate. Gold was not part of the assaying strategy.

Patino Mines Ltd. worked the Ida Lake property, previously owned by Windward Gold Mines during 1974-1975. The claims block overlapped slightly the actual eastern limit of the Monexco property. On cycle of exploration was done, starting with ground EM and magnetometry survey. Two test holes were drilled on conductors cross over associated with strong magnetic contrasts,

but without apparent results. Finally, mapping was proposed to improve the understanding of the whole sector.

During 1977, Campbell Chibougamau programmed a MARK VI INPUT and airborne magnetometric survey on a regional scale encompassing the Monexco property. North-west survey lines were implanted east of Lac Waconichi with the objective to intercept north-east structures. A group of strong anomalies were identified immediately west of Lac France inside actual Monexco property limits. Their unstructured orientation suggests that they are not related to formation conductors but could correspond to massive sulfides responses (Pollock F.W., 1977)

The SDBJ ("Société de Développement de la Baie James") optioned a block of 21 claims surrounding the historical Rivière France gold discovery. The property was briefly worked in partnership with Monexco Resources in 1979. An soil survey at the orientation level was done on magnetic anomalies outlined by Obalski (1945) Ltd. This information was doubled by a ground VLF survey and a prospecting phase. Samples of tuffs, quartz veins and felsic dykes collected in the Rivière France returned a wide array of gold values: 12 samples over 60 returned grades above 0.5 g/t Au (ref. GM-36005). Finally, 6 diamond drill holes were planned on best anomalies. A cumulative metrage of 195 m was drilled.

Year of publication	Claims owner, Reference	Summary of Works	Exploration Input
1960	Obalski Mines (1945) Ltd., GM 10134-A, B	Magnetometric and self potential surveys using 90 m or 122 m line spacing.	Two main high magnetic anomalies associated with gold showings.
1972	Rio Tinto Canadian Exploration, GM 28004	Data compilation, geology	Detailed interpretation of east-west shearing and north-east faulting.
1973	Monexco Ressources, Ltd., GM 28864	37.6 linear km of ground EM survey (McPhar horizontal loop) and magnetometry at 122 m spacing.	EM anomalies identified for follow up.
1974	Monexco Ressources Ltd., GM 29996	8 DDH for 683m drilled in the north-west part of the property on VMS targets.	Mafic-felsic contact with graphite layers. Massive sulfides <1m with disseminated pyrite intervals. Traces to 0.03 opt gold over 1m in felsic units (ddh #1). Under sampled.
1974	Monexco Ressources Ltd, GM 30147	Massive sulfides potential assessment.	EM anomalies identified for follow up. Lemoyne VMS deposit exploration approach.

1975	Patino Mining Corp., GM 30675	11 DDH for 1,142m drilled in the north-west part of the property on VMS targets.	Mafic-felsic contact with sulfides stringers in siliceous tuffs intersected. Any base metals sulfides observed. Traces of gold.
1975	Monexco Ressources Ltd., GM 30932	68 linear km of EM survey (Geonic EM-17 horizontal loop) and 26.7 km of magnetometry survey.	
1975	Patino Mines Ltd., GM 32181, 31209, 31210.	42.5 km of ground EM (Sintrex SE-600) and Fluxgate magnetometric survey. 2 holes drilled on best anomalies.	Conductors identified as formation.
1977	Campbell Chibougamau Mines Ltd., GM 69650	Regional survey composed of N330 °, 125 m spaced, flight lines. Use of Mark VI pulse EM system combined with a proton procession magnetometer.	New conductors detected with massive sulfides responses southwest of Lac France.
1979	SDBJ., GM 36005	5.8 linear km of ground geophysical survey. Follow up drilling with 6 ddh totalling 195 m, mainly on conductors coincident with soil geochemistry anomalies.	Weak gold signal obtained (0.14 g/t Au over 0.6 m in hole MO-79-06).
1979	SDBJ., GM 34776	5.85 linear km of VLF and EM survey done on 125 m spaced out grid	Weak conductors detected on both sides of Rivière France.

TABLE 3 : ASSESSMENT REPORTS FILED BETWEEN 1960 AND 1979 ON THE MONEXCO PROPERTY.

SOURCE: SIGEOM.MINES.GOUV.QC.CA

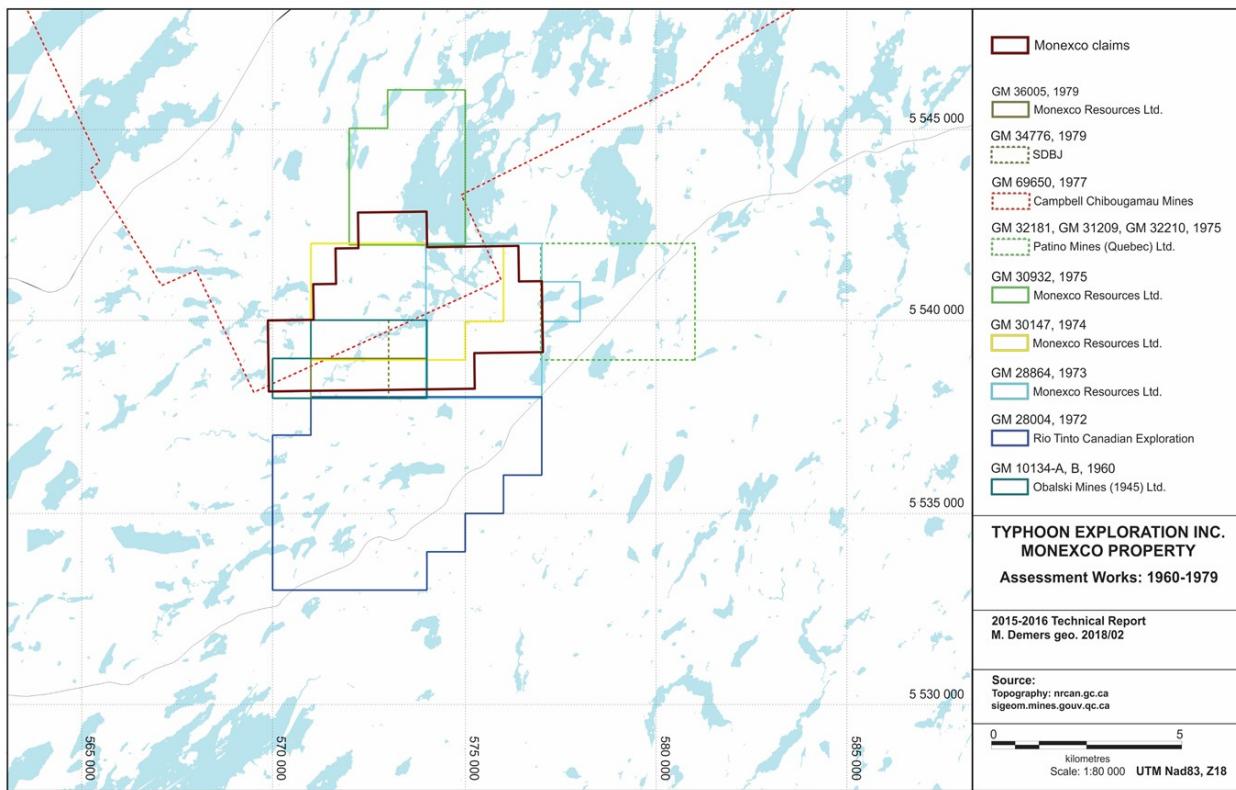


FIGURE 11 : MONEXCO PROPERTY WITH ASSESSMENT WORKS FILED BETWEEN 1960 AND 1979.

6.2.3 Exploration Works, 1980-1990

During 1980-1981, a ground geophysical survey was executed by SDBJ combining VLF, Max-Min EM and magnetometry to cover a 2.7 km base line with 100 m spaced lines. The follow up prospecting and mapping program aimed to discover new gold showings in top of geophysical anomalies. According to authors, prospecting results were deceiving. Meanwhile, two samples returned values of 2.8 g/t Au surrounded by scattered values above 0.1 g/t gold. Each discovery area corresponds to 2 X 3 m areas. They are located about 225 m from each other on the same easting, about 300 m east of the historical Rivière France gold showing. At the property scale, the refining of geophysical methods lead to interpret internal oblique structure inside 800 m wide shear zone system.

Considering the low percentage of outcrop and the buried nature of most geophysical anomalies, heavy minerals from till and stream sediments, as humus, were sampled and assayed to compare the reliability of results and the easiness to conduct a complete survey. Total of 1,083 humus samples were collected using the same grid as the geophysics survey. Results were not conclusive and proved the difficulty to replicate previous surveys (ref.GM-39234).

During following years, exploration companies managed exploration in the Rivière France area using different concepts and methods. These programs overlapped portions of the actual Monexco property outline. In 1982, Corporation Auchib Inc. compiled sulfides and gold mineralization located at the upper contact of the Bourbeau sill, which corresponds roughly

with the southern limit of the Monexco property. This exploration model was applied to evaluate the importance of north-east faults on gold mineralization, and to identify possible remnants of volcanogenic sulfides horizons embedded in the Gilman Formation, or at his contacts with Bourbeau intrusions. The compilation of existing data identified 8 conductors fitting with this model (ref. GM-41302).

North-west of the actual Monexco property, Golden Horse Resources executed a Max-Min survey in 1986 to re-assess anomalies previously identified by Windward Gold Mines and Monexco Resources ten years before. Eight holes were drilled to cover multiple targets. Pluri-metric massive sulfides mineralized zones were intersected with traces of gold and base metals. Best results obtained were 1 g/t gold over 1.5 m in an unlocated hole. A few assays were done for gold in historical holes and conductors may be barely covered due to too short holes (Masterman P.C,1986).

During the same period, Promotion Minière Pamac extended an historical trench close to the southern side of Lac Duquette Nord over a strike length of 650 m. The trench is located around 200 m east of the Monexco property, along strike with Rivière France mineralized system. An isolated grade of 100 g/t Ag was obtained from the trench in association with zinc and lead grades (De Chavigny P. et al., 1984). Four kilometers westward, the Schaller's Claims Company opened a 200 meters long stripping on the Lac Duquette trend known today under the name of France Est or McCorkill gold showing. The main sulfides concentration identified at surface was blasted and sampled. Out of range results for copper and gold assayed by a laboratory outside the normal commercial circuit clearly identified a salting process (ref. GM-45198). The group pursued its activities with an airborne EM-VLF-MAG survey following a north-south flight path. In 1988, Salamis C. & Associates produced a strategic report outlining structural controls for gold and base metals mineralization.

In 1989, Société d'Exploration MasterGroup controlled a large block of claims surrounding the Lac France Pluton. The company covered France Est showing with 370 km of magnetometric and EM survey north-south flight lines at 100 m spacing.

Between 1988 and 1992, SOQUEM worked on the France Project, a large land package sharing claims with the actual Monexco property. In 1988, 103.5 km of ground EM-VLF were executed on a north-south grid with spacing varying between 40, 80 or 160 m. A magnetometric survey including vertical gradient and total field measurement was passed on 155.2km of grid lines. A repetition of north-east relatively short responses was obtained with the VLF, competing with east-west to slightly north-east more major anomalies. This pattern is identified inside the Monexco property west of Rivière France. An important exploration program was run afterward including 39 km of IP survey done on two grids, mainly to follow the Gilman Formation lower contact with the Bourbeau Sill and the transition with the Rivière France deformation zone located a few hundred meters northward. Eighty-two (82) km of TBF ground measurement were done on France Nord claims block generating a 40 conductors pattern. A Beep Mat follow up was prescribed considering the apparent shallow depth of bedrock.

Trenches were opened on four accessible anomalies corresponding to a combined area of 900 m². Finally, 7 holes were drilled for a total metrage of 958.4 m. Two gold intercepts were obtained in hole 87-02: 1.3 g/t over 0.5m, 2.3 g/t over 1.4m (GM-48298).

The entire France Project hosts four sectors of interest, some of them possibly included inside the actual Monexco property contour. The Lac Neron South-East (87-01) and 87-04 showings are based on mineralized boulders giving grade respectively of 32 g/t Au and 1 g/t. Silver-lead-zinc and copper values were obtained respectively from occurrences 87-02 and 87-05 (GM-49298).

Two areas of interest were detailed by Soquem exploration works (Parts "F" and "D") located respectively about 1km west and 1km east of Rivière France. On block "F", a higher density of outcrops helped to map with some details lithologies and structures. General weak geophysical responses obtained can explain the timid drilling approach applied. Some trenching and drilling results can be localized inside the actual Monexco property. Hole I-88-5 returned 6.9 g/t over 1 m and trench TR-88-13, returned 1.0 g/t over 2.0m on block "D", about 800 m south-east of the Monexco gold showings area. Break and inflections observed in the magnetic pattern could indicate a strong influence of north-south to north-east structures.

Year of publication	Claims owner, reference	Summary of Works	Exploration Input
1981	SDBJ., GM 39233	Geological and sampling report, magnetometry and VLF survey at 100 m spacing covering the entire property.	Two new gold showings (2.8 g/t Au) identified 200 m east of Rivière France gold showings area.
1982	SDBJ, GM 39234	1,083 humus samples on 32 km grid lines. 23 stream sediments samples.	Gold results too close from the detection limit to be conclusive.
1982	Corporation Minière Auchib Inc., GM 39002	Data integration, geological compilation.	Identification of a series of conductors associated with north-east faults intersection.
1984	Claims de Chavigny, GM 41302	Targeting on Lac Duquette Nord Ag-Zn-Au-Cu mineralization.	Targets identified close to the Monexco property eastern limit.
1986	Golden Horse Resources Ltd., GM 43634	43.1km of Max-Min survey. 8 holes drilled on best anomalies.	Re-assessment of west north-west conductors. Multiple sulfides intersections obtained by drilling. Poorly located.
1986	Promotion minière Pamac Ltée, GM 43792	Mechanical stripping of historical La Duquette Nord polymetallic sulfides showing.	100 g/t Ag (maximum grade) obtained by new sampling. Undetailed methodology.
1988	Société d'Exploration Master Group, GM 47207	Geological report, presentation of a conceptual exploration model.	Gold results compilation with clear separation of gold trends.
1988	Soquem, GM 47502	EM-VLF and magnetometry survey, respectively of 103.5 and 155.2 km.	Anomalies west of Rivière France inside Monexco property limits.
1988	Soquem, GM 42298	Mapping and dipole-dipole survey. 39 km on 160 m spaced	Lac Néron SE showing (87-01): 32 g/t boulder.

		lines. Follow up trenching on 4 targets (900m ²). 7 DDH implanted for a total of 958.4 m.	Showing 87-04: 1 g/t Au boulder. Drill intercepts: 1.3g/t/0.5m Au, 2.3g/t/1.4m Au.
1989	Soquem, GM 49133	TBF ground survey on 82 km on grid covering the France Nord claims block. Anomalies detailed with 10 m widely spaced grids.	40 conductors identified. Beep Mat follow up.
1989	Société d'Exploration Minière MasterGroup, GM 48883	On board airborne Aerodat multi-frequency EM system, Totem 2A VLF system and Sintrex magnetometer. 370 km of north-south flight lines at 100 m spacing.	New details obtained: small scale inflexions and possible strike slip movements along main conductors.
1989	Claims Schaller, GM 48432	250 km of EM-VLF-MAG survey at 100 m spacing.	

TABLE 4 : ASSESSMENT REPORTS FILED BETWEEN 1980 AND 1989 ON THE MONEXCO PROPERTY.

SOURCE: SIGEOM.MINES.GOUV.QC.CA

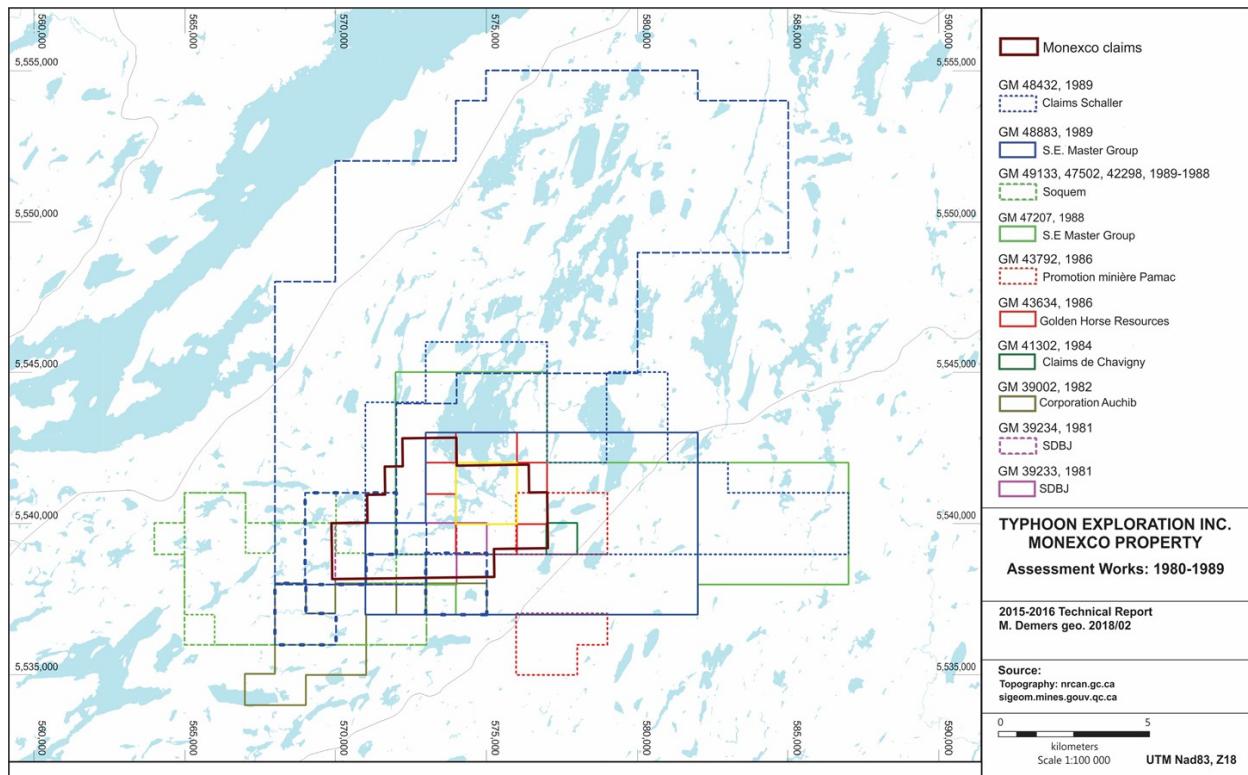


FIGURE 12 : MONEXCO PROPERTY WITH ASSESSMENT WORKS FILED BETWEEN 1980 AND 1989.

6.2.4 Exploration Works, 1990-2000

In 1990, Master Group Mining Exploration Company took control on a 401 claims block, which included a large part of the Rivière France area. A systematic compilation of all documented exploration works done since the fifties was produced, including some previously undisclosed information. A Max-Min EM survey was done on the strong conductive zone of Lac France Est gold showing to refine the position of anomalies.

Soquem ended its activity on the France project with a property scale magnetic and electromagnetic survey on 100 m spaced line. Many EM-TBF anomalies were connected and used to illustrate the structural pattern of the area.

Antoro Ressources Inc. optioned the Monexco claims from SDBJ in 1999. The claims block was made of 21 claims for a total area of 336 hectares centered on the historical Monexco showing. Afterward, a Beep-Mar survey was executed on a cut grid at 100 m spacing.

Year of publication	Claims owner, reference	Summary of Works	Exploration Input
1990	Soquem, GM 50200	Compilation works.	Block "F" results inside actual Monexco property.
1990	Master Group Mining Exploration Company, GM 51025, GM 50452	Property report. Systematic review of all exploration works done on the property.	
1990-1991	Master Group Mining Exploration Company, GM 49673, GM 51026	Max-Min survey replicating Lac France est conductors.	
1992	Soquem, GM 51530	265 km of magnetic and electromagnetic survey at 100 m spacing covering the whole property.	Emphasis done on north-east structures interpretation.
1999	Antoro Resources Inc., GM 56554	Beep-Mat survey on a cut grid.	
1999	Antoro Resources Inc., GM 56555	Compilation report.	

TABLE 5 : ASSESSMENT REPORTS FILED BETWEEN 1990 AND 2000 ON THE MONEXCO PROPERTY.

SOURCE: SIGEOM.MINES.GOUV.QC.CA

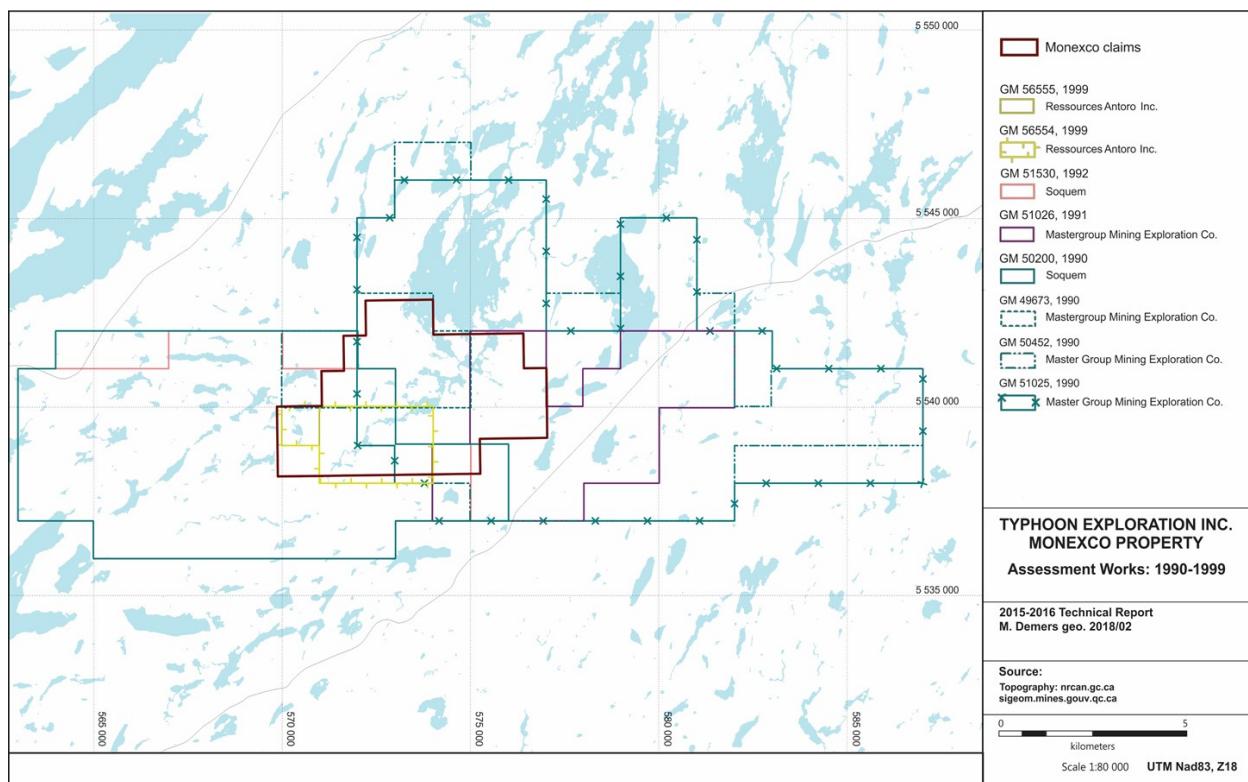


FIGURE 13 : MONEXCO PROPERTY WITH ASSESSMENT WORKS FILED BETWEEN 1990 AND 2000.

6.2 Exploration Works Under Typhoon Management

Typhoon Exploration acquired in 2002 a landholding made of 108 claims.

Following a flow through financing done in 2002, a series of works covered the two gold bearing trends dissected by the north-east Rivière France lineament: The Rivière France structural corridor hosting the Monexco showing, and the Faribault corridor marking the contact between Gilman and Blondeau formations.

In 2010, the property contour evolved with the addition of claims south and along strike from the Monexco gold showings area based on gold results obtained from trenching programs. In contrast, claims of the McCorkill property located far east from the Rivière France along the Faribault Fault were abandoned. During following years, exploration expenditures attrition was used to preserve most of the Monexco property with 42 claims on an area of around 2,324.02 hectares.

Exploration Activities, 2003

A total of 43 km of ground magnetometric survey and 9.6 km of resistivity and IP survey have initiated exploration works on the property. The grid was implanted to cover mainly the McCorkill north-west trend using 100 m spaced north-south lines which extended up to 1.5 km. A second smaller grid was implemented south-westward to cover the Monexco gold showing and the nearby Rivière France with 500 m long 100 m spaced north-south lines connected on a 500 m long base line.

The IP survey configuration used was dipole-dipole with 25 m spacing between emitting electrodes. Measurements were done for n 1 to n 6 separations with an accuracy of 0.1 mV and 0.1mV/V. Measurements of the total magnetic field were taken at each 25 m with an accuracy of 0.1 nT (Boileau P., 2003).

Prospecting and sampling started, and three sites were stripped for channel sampling. The Monexco showing was extended to the west toward Rivière France. The two other stripped areas were located about 200 m south of the Monexco showing to test an IP anomaly. The second site (Monexco No.2) intercepted a contact zones between a gabbro sill, quartz-feldspathic porphyry dykes, lamprophyre dykes and sulfides bearing graphitic sediments over more than 30 m. The third site (Le Pic) located 125 m due west crossed the same target with a 75 m long strip. Strongly sheared mafic to felsic volcanics interlayered with metric (<2 m) deformed quartz-feldspathic porphyry dykes were uncovered. Combined surface works totalled an area of 5,170 km² (Gaudreault 2003).

First reconnaissance works were done on McCorkill claims, targeting the France Est showing. Five channels and one grab sample were taken at this location.

That years, 31 rocks exposures were visited, described and geologically summarized. Total of 28 grab samples and 72 channel samples were collected corresponding to a cumulative length of 38 m.

Exploration Activities, 2004

A second phase of geophysical survey was done in 2004 to complete the property coverage with the same parameters as ones previously used for 2003 surveys. 2.4 km long east-west base line was implanted with 100 m spaced out grid lines starting at 2000W and finishing at 400E. About 35 km of line cutting was required to complete the grid. The level of detail and the accuracy of the magnetometric survey was improved with 0.01 nT lectures repeated at each 12.5 m (Boileau P., 2004).

The sampling was concentrated on the historical Monexco showing (Monexco No.1, No.2, No.3) with re sampling of mineralized structure previously identified (Rioux L., 2004). The coverage is composed of 162 channel samples for a cumulative metrage of 133 m. The France Est gold showing located on the McCorkill claims block was tested with 17 grab samples. Field activities reporting mentioned that an unknown number of grab samples were taken outside established stripped areas.

Following the sampling stage, six short diamond drill holes (MO-04-02 to MO-04-07) of NQ diameter were drilled for a combined metrage of 313.5 m. The objective was to test the immediate continuity of N040° gold bearing quartz-tourmaline veins observed and sampled on stripped outcrops. Holes length of 40 to 60 meters combined with a moderate dip gave a vertical depth of interception varying between 30 and 60 m. A first small diameter holes (MO-04-01) of 7.5 m had been previously drilled and sampled but without any tracking of information.

Exploration Activities, 2005

In 2005, a humus soil survey was performed by IOS Services Geoscientifiques Inc., centered on the Rivière France area. Total of 453 samples were collected at 50 m spacing on 100 m widely spaced lines. The existing grid was used to cover the influence of the Rivière France deformation corridor over a strike length of about 1.5 km centered on Rivière France position. Samples have a line/station position on the main property grid. The interpretation of metallic signatures obtained is strongly dependant of environmental, geochemical, and even analytical factors which both require a careful validation works (Girard, 2006). After a preliminary statistical treatment, gold and some pathfinders elements (copper, molybdenum, lead, copper) form sporadic anomalies. At this level of understanding, no results of this survey were crossed either with the geological map or with geophysical signals to develop further potential targets.

Exploration Activities, 2006

A bulk sample of 25 kilograms was extracted during the summer of 2006. The objective of this operation was to test the grade and recovery of extensional quartz-tourmaline quartz veins. The material was processed at the LTM laboratory of Val d'Or in the course of 2007 using a Knelson concentrator. Results gave a head grade of 126.8 g/t gold for a recovery rate of 80% for 100% of the material passing 20 meshes (St-Jean E., 2007).

Exploration Activities, 2007

Considering exploration results obtained, twenty (20) km of line cutting were added on nine (9) claims staked to extend the property to the South-East along the Rivière France corridor. An extensive stripping and sampling program realized across the property to follow up on polarization and humus anomalies. Seventeen (17) stripped surfaces were mapped with channel samples positions marked on the drawing. A total of 256 channel samples were listed for this phase (Gagnon R., 2008).

These samples were minimally tested for seven pathfinders (Ag, Cu, Zn, Mo, Ni, Co, Cr). A more complete sequence of elements which included among others As, Bi, Sb, W was assayed for a group of 102 samples. Twenty-five (25) grab samples are also recorded with assays for gold and the sequence of seven pathfinders.

A structural modelling work was produced in collaboration with MIRA Geosciences Inc. and URSTM, an applied research unit attached to the Cégep de l'Abitibi-Témiscamingue, using the Gocad platform. This type of approach used the integration of ground and airborne geophysics, geological mapping, prospecting data and soil geochemistry to create a 3D block diagram of the structural environment of the exploration target.

Data compilation showed that the gold system is spatially associated with an unresolved structural complexity possibly associated with the France Pluton emplacement. New targets were identified and tested by mechanical stripping in 2007 and 2008.

Exploration Activities, 2008

The entire property area was covered with a combination of magnetometric, VLF and spectrometric airborne survey. The survey was implemented by Geophysics GPR International Inc. to cover the property integrally. 395 linear km were flown following east-west flight lines at 50 m spacing. The platform combined an Helimager™ magnetic gradiometer system, the Totem-2A multi-channel VLF, and a gamma spectrometer PICO GRS-10. The resulting sampling interval was of 2.5 m for the magnetic field measurement and the VLF, and of 25 m for the gamma ray survey. Diurnal variations were tracked with a Total Magnetic Field sensor set up at a ground base station located in the Chibougamau area. The Gamma-ray spectrometry surveys mapped naturally emitted radiations coming from potassium ⁴⁰, and indirectly from uranium ²³⁸ and thorium ²³². The snow coverage created a situation where the processed signal to noise ratio was too low to be able to estimate reliable elements concentrations. The data processing flow sheet is detailed for each method in D'Amours (2008).

On the field level, a IP and resistivity survey of 38 linear km at 50 m spacing covered the property area located east of Rivière France. A low noise signal was obtained on most lines, giving a high definition level to the survey. Eighteen (18) anomalies qualified as moderate to strong and showing lateral continuity over 200 to 600 m were highlighted (Hubert 2008).

The program of field verification focused on the geological mapping and resampling of north-east gold bearing veins and structures observed outcrops. Prospecting was done east of River France, between lines 5+00E and 23+00E, following polarization anomalies location. The observation of positive geological indicators such as veins, quartzo-feldspathic porphyry dykes and strong iron carbonate alteration was used as guidelines to open 5 new stripings and extending 2 others. The total of 409 channel samples results is tied up in the Technical Report: "Rapport technique 43-101 de la propriété Monexco, canton McCorkill, Chibougamau, Québec, Beauregard A.J., 2008".

A structural modelling was submitted by Technologies Earthmetrix inc. for targets generation. Satellite images enhancing processes were applied to map brittle and ductile structures with a precision varying between 4 and 50 m. Exploration targets generated were based on the location of existing gold showing inside the structural pattern.

Exploration Activities, 2011

Seven (7) shallow diamond drill holes were drilled for a metrage of 1,044 m. These holes were planned to intercept the extension of best channel samples results obtained at surface at Monexco No.1 stripped area. Two drill orientations were used in function of structural orientations observed: north north-east and west north-west. Best values were obtained in hole MO-11-05 with 1.7, 1.3 and 4.6 grams over 1.0 m in basalt (Beauregard A.J., 2012).

PROJECT	MONEXCO		
YEAR	OWNER	Summary of works, exploration input	Reference
2012	Typhoon	Drilling under Monexco No.1 gold showing. 7 holes: MO-11-01 to MO-11-07	GM-67476, Beauregard A.J., Gaudreault D.
2008	Typhoon	Structural modelling and targeting using a combination of Landsat and aerial photos.	Moreau A., 2008 (Internal report)
2008	Typhoon	Airborne magnetic, VLF and radiometric survey. 395 linear km at 50 m spacing flew by Geophysics GPR International Inc.	GM-64527, D'Amours I., Letourneau, O.
2008	Typhoon	Technical Report NI43-101, geological mapping and sampling on 12 trenches.	GM-64620, Beauregard A.J., Gaudreault D.
2008	Typhoon	IP survey, dipole-dipole, 38 linear km.	GM-64619, Hubert J.M.
2008	Typhoon	Monexco - McCorkill, magnetometry and Induced Polarization compilation.	MB GeoSolutions (Boileau P.)
2007	Typhoon	Technical Report on stripping and sampling works update. 256 new channel samples from 17 mapped areas.	Gagnon R.
2006	Typhoon	Recovery test on a 25kg sample using a Knelson gravity concentrator	Multi-Ressources Boréal (internal report)
2006	Typhoon	Humus soil survey covering the Rivière France area.	IOS Services Geoscientifiques, (internal report)
2005	Typhoon	Drilling campaign on the Monexco showing 6 holes: MO-04-02, 03, 04, 05, 06, 07	GM-62398, Rioux L., Hammouche H.
2004	Typhoon	Ground geophysics: magnetometry and IP survey. Gerard Lambert Geosciences. Strong east-west conductive anomalies with lowering resistivity interpreted as graphitic sediments in the southern part of the property.	GM-62400, Lambert G.

2004	Typhoon	Overview of exploration works on the Monexco-McCorkill properties. 1 hole: MO-04-01 Relation highlighted between the gold enrichment and north-east structures.	GM-61589, Rioux L.
2004	Typhoon	Structural interpretation.	GM-62399, Moreau A.
2003	Typhoon	Technical report on exploration works done between March 25 th and August 6 th 2003.	Gaudreault D., 2003
2003	Typhoon	Overview of exploration works on the Monexco-McCorkill properties. Channel sampling and mapping.	GM-61428, Rioux L.
2003	Typhoon	Geophysics: magnetometry and electromagnetic surveys done on the Rivière France corridor (McCorkill property) and on the Monexco showing.	Boileau P., (internal report)

TABLE 6 : EXPLORATION REPORTS DONE UNDER TYPHOON MANAGEMENT FROM 2002 TO 2011.

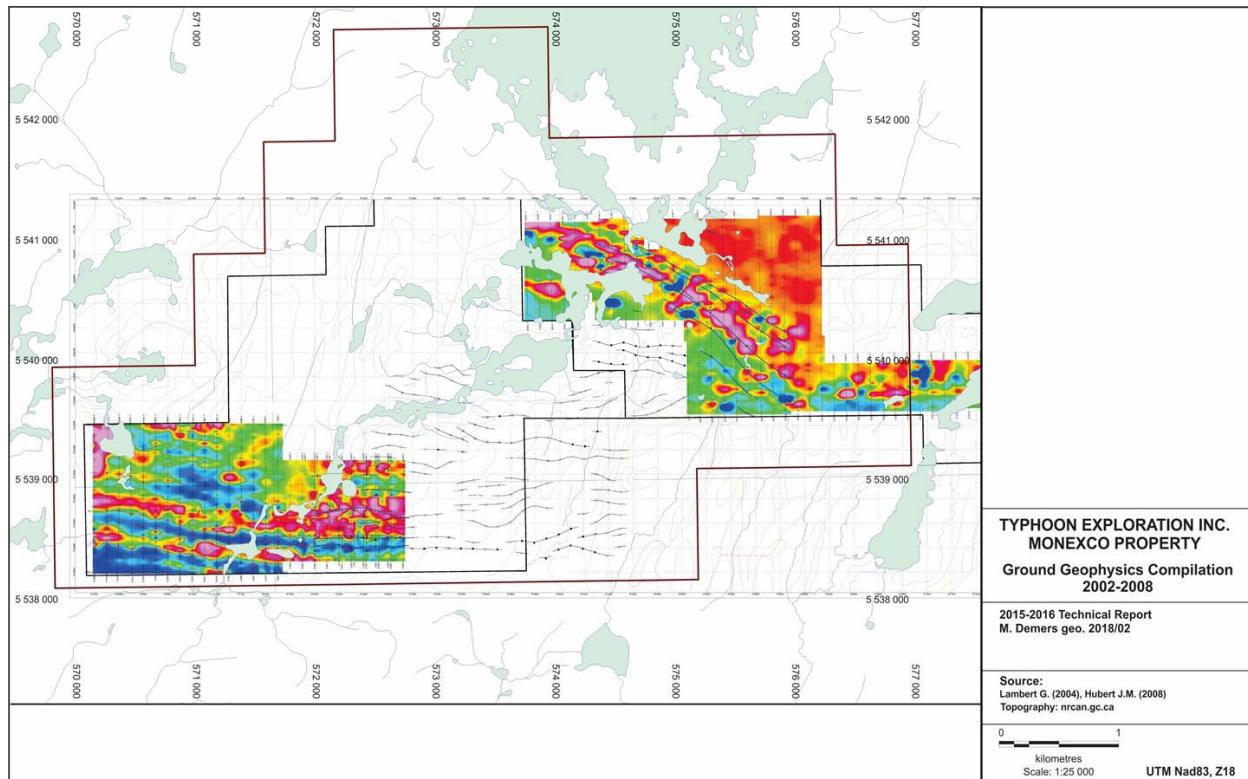


FIGURE 14 : GROUND GEOPHYSICS COMPILATION, MAGNETOMETRY AND IP SURVEYS REALIZED UNDER TYPHOON MANAGEMENT IN 2003-2004. SOURCE: MB GEOSOLUTIONS, DEC. 2008.

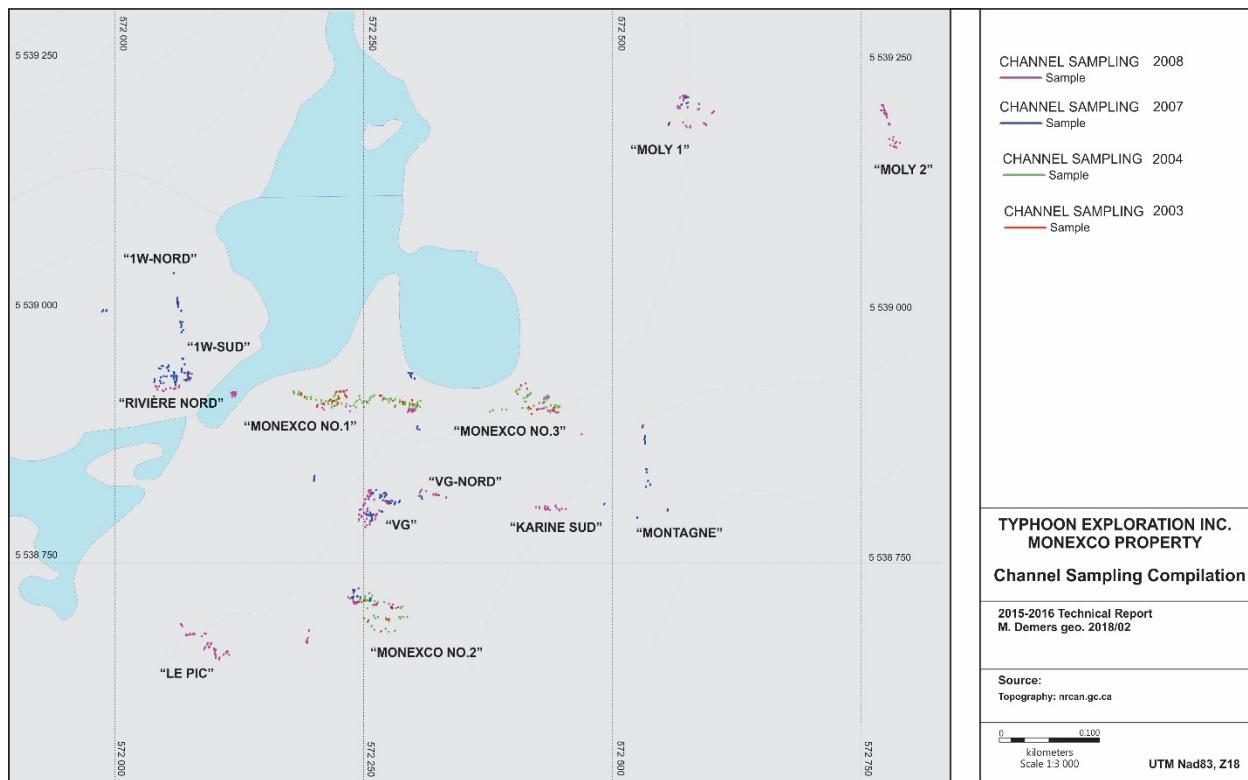


FIGURE 15 : 2003-2008 CHANNEL SAMPLING COVERING THE MONEXCO GOLD SHOWING AREA.

7. REGIONAL GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

The Chibougamau area was the subject of numbers of geoscientific studies since the turn of the 20th century. Daigneault et al. (1990) put together a synthetic geological model based on key observations combined with NTS sheets mapping done by the Government of Quebec in report MM 89-03. The report DPV-837 (Duquette G., 1982) carried a unit by unit description and map comments covering northern parts of McKenzie et de Roy Townships, and the north-west corner of the McCorkill Township.

Recently, Leclerc F. (2011), published a PhD research thesis on the Blondeau Formation and its relationship with the Cummings sills. The framework and objective of this research is complementary to this technical report. Closer to Monexco project, the MERN produced a

thematic report on the Rivière France shear system and its association with gold mineralisation of the Monexco property (Vézina C. et al., 2015).

The Chibougamau geological area is at the north-east extremity of the Archean Abitibi Greenstone Belt. It is limited to the North by the Opatica Sub-Province and to the East by the Grenville Province. The geological context is distinctive from the rest of the Abitibi North Volcanic Zone by the presence of extensive mafic-ultramafic sills interlayered to the volcanic stratigraphy. Also, the regional deformation related to the Kenorean Orogen has generated a dome and basins folding pattern that can be followed over 100 km, going westward from the Grenville Front to the Chapais area. This elongated pattern includes from North to South three main regional double folds axis according to stratigraphic units involved: the Waconichi Synclinal and Anticlinal, Chibougamau Synclinal and Anticlinal, Chapais Synclinal, La Dauversière Anticlinal and the Druillettes Synclinal.

The Monexco property can be considered as a grey zone inside this pattern. The property location corresponds to the Chibougamau synclinal eastern closure against north to north-east faults. Immediately east of the property, Proterozoic magmatism and metamorphism which affect the eastern extension of the Abitibi Belt is coherent with a crustal deepening model.

The following regional description puts the focus on the north-east portion of the district, which corresponds to Waconichi folds and the Chibougamau synclinal.

The stratigraphy of the area is characterized by two volcanic cycles corresponding to the Roy Group stratigraphy as defined by Leclerc F. (2011). The first cycle begins with the Obatogamau Formation, composed mainly of thick massive flows of tholeiitic basalt evolving to pillowed flows brecciated at the top. The lateral continuity of this unit is observed over 150 km from Miquelon area to the Grenville Front (Daigneault R. et al., 1990). On top of this sequence, felsic volcanics effusive centers associated with sub-volcanic intrusions were grouped inside the Waconichi Formation by Leclerc F. (2011). In contrast, previous field studies had demonstrated the unicity of three main centers in terms of facies assemblage and paleogeographic interpretation corresponding to Portage, Lemoine and Queylus, Scott and Allard Members. In each case, different final exhalative products, like silica cap, massive sulfides or Algoma type iron formations are associated with a base metals enrichment. Ages obtained from a porphyric rhyolite in Lemoyne Member gave 2,729.7 m.y. and 2,728.0 m.y. (Leclerc F. et al. 2011)

The second cycle can be split in five formations starting with Gilman and Blondeau formations. The volcanic regime of the Gilman, even similar in terms of composition and affinity with the first cycle, had a more local influence on the stratigraphy than the older Obatogamau Formation. Major variations of basalt flows width and a clear succession of facies are observed with transitions from massive and granular lavas, to pillowed flows and hyaloclastic breccia facies at the top. The Gilman hosts mappable co-magmatic gabbroic sills or coarser crystallized flows that can reach a thickness of 100 m. The top of the formation is marked by sulfides bearing tuffaceous and brecciated andesitic flows. The following Blondeau Formation is a truly heterogeneous environment with dacitic pyroclastic flows interlayered with variolitic basalt and volcanism derived turbiditic sediments associated with graphitic mudrocks. The maximum thickness observed or interpreted is in the range of 1,000 m but the relation with other units is obliterated by faults contacts like the Faribault fault. (Daigneault R. et al. 1990). According to

authors (Leclerc F., 2011, and Daigneault R. et al., 1990), this unit can be considered as a transition between the second volcanic cycle and the Opemisca sedimentary Group.

The Chebistuan Formation (Opemisca Group) composed of epiclastites is dominant 5 km northwest of the Monexco property as a part of the Waconichi Synclinal. The transition observed in this area is gradational with the Bordeleau Formation (Daigneault R. et al., 1990).

The Blondeau and Bordeleau formations are injected by Cummings mafic Sills composed of three differentiated intrusions identified as Roberge, Venture, Bourbeau. The thickness of individual intrusions varies from 500 to 1,000 m (Daigneault R. et al., 1990). The age of 2,717 m.y. extracted from of a quartz pyroxenite facies of the Bourbeau sill is contemporaneous with the Blondeau Formation (Vezina C. et al., 2015). They are considered regionally as a significant metallotect, hosting the Chapais Cu-Au deposit.

The Chibougamau area is affected by a polyphased deformation starting with the emplacement of the Lac Doré Intrusive Complex centered on the Chibougamau mining camp. Ages of post kinematic plutons like the Lac France Pluton put an upper limit on the Archean orogenic cycle. Its age should be inside the range defined by other dated plutons like the Muscocho (2,701 +- m.y.) and Boisvert (2,697 +-4 m.y.) intrusions. These data were compiled from Leclerc F., (2011).

Tectonic Events	Structural Features
North-west / south-east syn-volcanic and syn-magmatic faulting.	North-west / south-east faults, multi-scale.
D 1: early folding	
D 2: Tilting and folding associated with the Lac Doré intrusive complex emplacement. Opemisca Group sedimentation in synformal basins.	P2 east-west folding with S2 related schistosity.
Normal shearing.	Increasing intensity of the regional schistosity in east-west high strain zones. Ex: Rivière France deformation zone.
Oblique shearing creating an anastomosed deformation pattern and the refolding of P2 folds.	North-east sinistral shears. North-west dextral shears.
Grenvillian Orogen	North north-east / south south-west faults.

TABLE 7 : DEFORMATION HISTORY, CHIBOUGAMAU SEGMENT.

SOURCE: MB2015-4 (VÉZINA ET AL., 2015).

YEAR	SUMMARY OF WORKS	REFERENCES
2016	Till and esker sampling: 116 samples at 5km spacing over an area of 3,985km ² (32H12, 32H13, 32J01, 32J08. Loc: West and south of the Monexco property.	DP 206-03, El Amrani M., Lamarche O.
2015	Structural analysis of the Rivière France Shear centered on the Monexco gold mineralization context.	MB 2015-04, Vézina C., Tremblay A., Leclerc F., Daoudene Y.
2011	PhD. Thesis on the Geochemistry of the Roy Group and the Cummings Complex	Leclerc F., INRS
2005	Geology of the Lac Mitshisso (SNRC 32H/13). Mapping of the extension of the Chibougamau geological system and interaction with the Grenville Front.	RP-2005-04, Bandyayera D., Caderon S., Houle P., Sharma K.N.M.
1982	Mapping of the north half of McKenzie and Roy Townships and northwest quarter of McCorkill Township.	DPV-537, Duquette G.
1975	Geology of the north-east corner of the McCorkill township. Rock sampling, geology, diamond drill holes location, stream sediments geochemistry.	RP-611, Avramtchev L.
1972	Preliminary report on the north-east corner and a part of the south-east corner of the McCorkill township.	DP-070, Avramtchev L.
1963	Preliminary report on the South-West corner of the McCorkill township.	RP-479, Pouliot G.

TABLE 8 : INVENTORY OF GESOSCIENTIFIC WORKS COVERING THE MONEXCO PROPERTY.

SOURCE: SIGEOM.MINES.GOUV.QC.CA

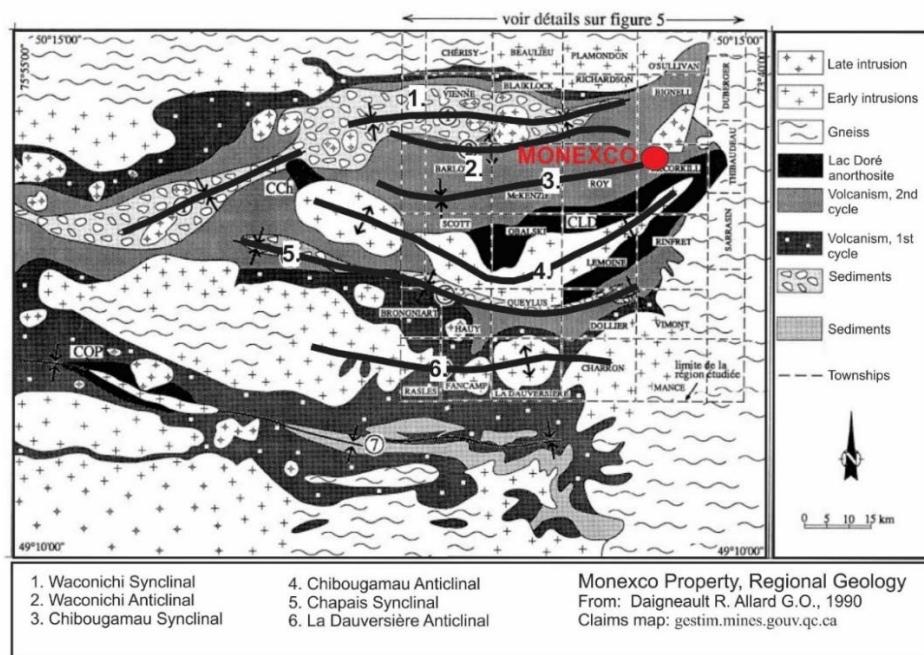


FIGURE 16 : THE MONEXCO PROPERTY IN THE CHIBOUGAMAU AREA GEOLOGICAL MAP. FROM DAIGNEAULT R., ET AL., 1990, MM89-03.

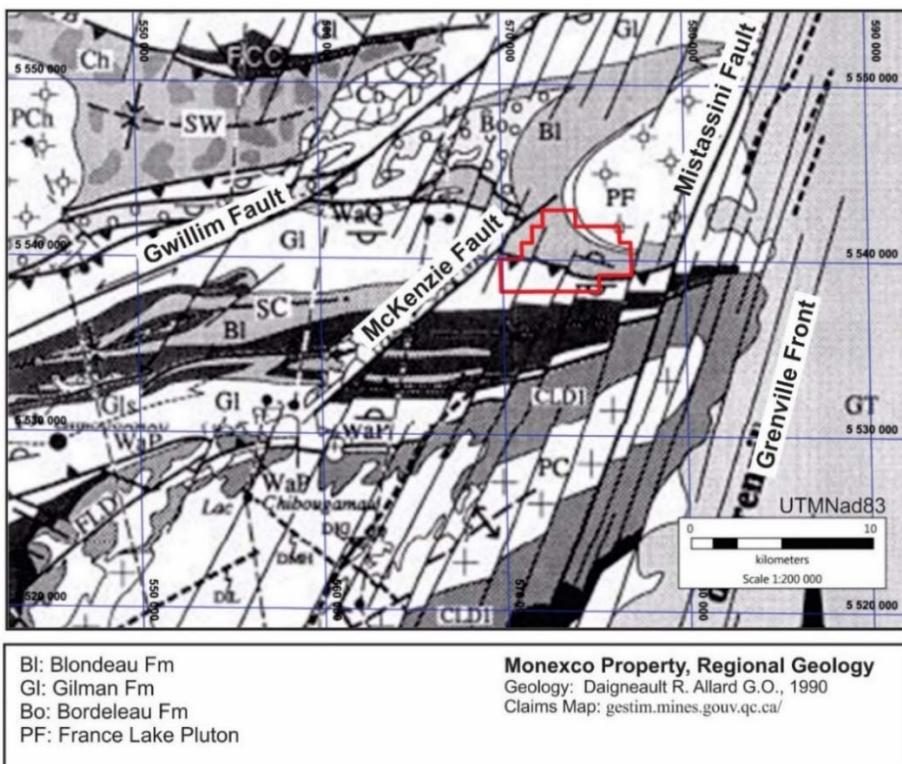


FIGURE 17 : POSITION OF THE MONEXCO PROPERTY IN THE CHIBOUGAMAU CAMP WITH MAIN FAULTS IDENTIFIED. FROM DAIGNEAULT R. ET AL., 1990, MM89-03.

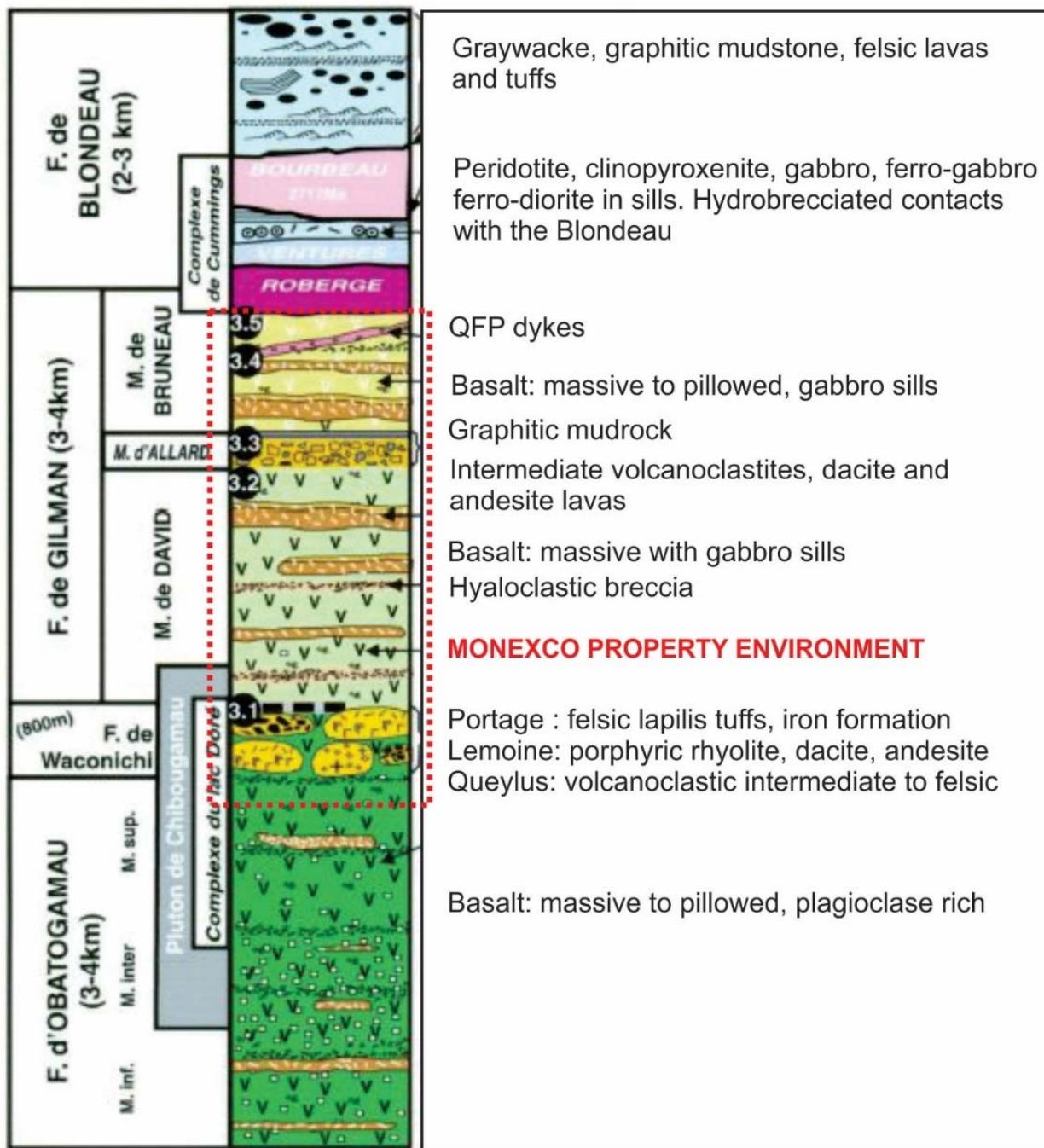


FIGURE 18 : IDEALIZED STRATIGRAPHIC SECTION OF THE ROY GROUP WITH THE MONEXCO PROPERTY ENVIRONMENT HIGHLIGHTED. SOURCE: LECLERC F., 2011.

7.2 Property Geology

The geological interpretation and understanding of the property is based mainly on MERN (“Énergie et Ressources Naturelles Québec”) studies done over years (Table 10). These works covered a mosaic of NTS sheets (32J01, 32H03, 32H13, 32G16). More recently, Vézina C et al. (2015) produced a detailed structural survey of the Monexco gold system with the objective to identify mineralization controls.

Since 1955, the integration of geoscientific information originating from different sources was rarely done during exploration works. Some stratigraphic and structural correlation problems remained therefore unresolved, even on the current Sigeom map.

In 2008, Typhoon with is main consultant Geological Inc. carried a detailed geological and sampling mapping on stripped areas (Gaudreault D., 2008). The objective was to evaluate with precision gold mineralization controls on main exposures of the Monexco gold system.

During 2014, an academic team leaded by Alain Tremblay and Christine Vézina of UQAM (Université of Québec at Montréal), and assisted by MERN staff, mapped Monexco trenches. Details of this work are presented in the MERN MB2015-04 report.

A geological assessment was executed by the Author in 2016 during the prospecting program. Field works spread over 19 days were required to validate key relationships between gold grades and geological controls such as lithological contacts, ductile deformation level and associated alterations. Data from 103 geological stations were retained to complete this report. At the end, an attempt was made to connect the quartzo-feldspathic porphyry dykes inside the Monexco gold system in preparation of the publication of exploration results (ref. Typhoon Exploration press release of July 18th 2017).

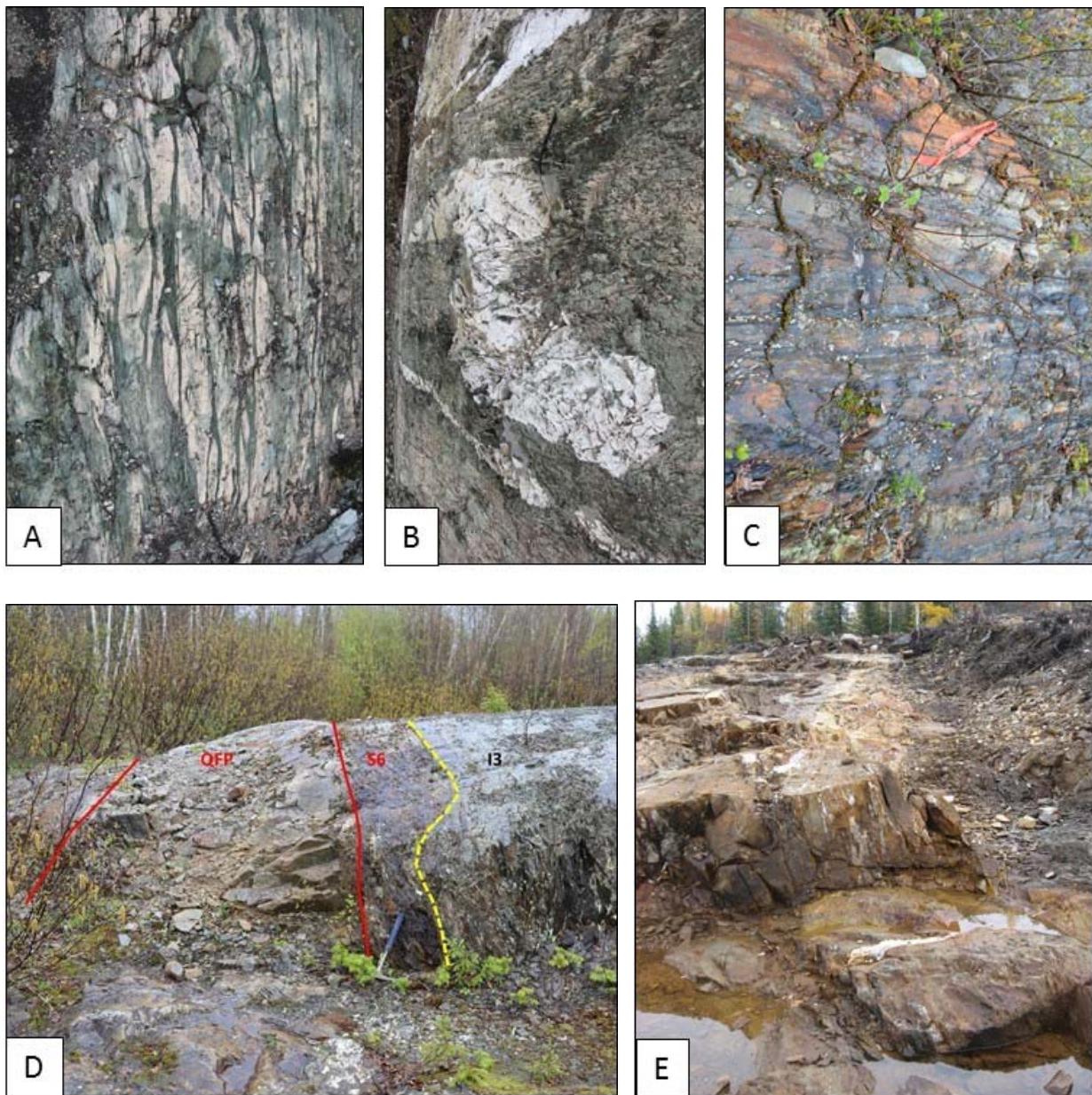
- The Monexco property is located east north-east of the Chibougamau segment, in an wedged area where east-west regional folding and shearing is strongly affected by late tectonic intrusions and Proterozoic tectonic events.
- The Lac France Pluton is a dominant element of the property geological map. The 10km wide late tectonic intrusion affects the regional folding, creating in the northern half of the property a deflection of stratigraphic contacts and shearing orientations. Lithologies attitudes vary from north-south immediately north-west of the property, to north-west west of Rivière France, and east-West, east of Rivière France. Dips are generally sub-vertical. The lack of outcrop made arduous the correlation of stratigraphy at the outlet of Rivière France. Rocks units can be strongly metamorphized by contact and inferred faults detected by geophysics could affect the lithological sequence close to the intrusion.
- North-east faulting is another important characteristic of Monexco property area. Even not mapped and assessed as is, the Rivière France lineament could be interpreted as a north-east shear zone based on the high density of oblique minor faults and fractures

observed on both side of the river. At a broader scale, similar regional north-east, east dipping faults, like the McKenzie Fault and the Gwillim Fault, located respectively 5 km and 15 km westward from the Rivière France lineament, are considered the main mettallotect for structurally controlled gold bearing quartz veins in the Chibougamau context (Pilote 1998).

- The proximity of the Grenville Front, located about 8 km to the east of the property eastern limit, is marked by parallel north to north-east fractures and faults associated with left lateral displacement (Duquette G., 1982). The Lac France Pluton cut contour shows displacement controlled by this episode of late fracturing.

Monenco Area

Geological units of the southern part of the property are part of the Chibougamau syncline according to Duquette G. (1982) and Daigneault R. et al. (1990). The property southern limit follows the upper contact between the Roberge Sill and the Gilman Formation, which is interpreted as sheared and faulted (Duquette G., 1982). The Gilman Formation is composed of granular basalt flows having thickness reaching 150 m. Co-magmatic gabbroic sills are sporadically interlayered with the flows sequence. About 1.5km north of the upper Roberge Sill, the Rivière France deformation zone begins to appear with strongly foliated sub-parallel metric bands in less deformed host rocks. According to field measurements, the main fabric strikes between N080 to N120 degrees with sub-vertical dips


The Monenco gold showing corresponds to a group of mechanically stripped areas extending along strike for approximately 400 m with a north-south influence of approximately 200 m. This system has lithological and structural complexities observed at all scales and repeated from outcrop to outcrop.

- The monotonous sequence of thick basaltic pillow flow is interlayered with intermediate tuffs of epiclastic origin and small felsic domes. Gabbro sills with thickness of generally less than 1 meter cut the volcanic stratigraphic while preserving a general east-west orientation. Sedimentary markers are identified by the presence of graphite.
- Quartzo-feldspathic porphyry dyke occurrences are preferably located on stratigraphic discontinuities (tuffs, flow top breccia, mudrock) with increasing level of ductile deformation and iron carbonate alteration. A generation of lamprophyre dykes with thickness from 0.5 to 5 meters is also embedded in this environment.
- Iron carbonatization is preferably developed along intrusions contacts and inside basalt and gabbro units.
- Gold bearing quartz-tourmaline veins are spatially associated and locally hosted in north-east fracturing and minor faulting forming 1 to 10 meters wide splays.

Monexco Gold Showing Area, Lithological Environment	
Lithology	Description
Basalt to andesite	Massive and pillow basaltic flows with hyaloclastic interflows. Generally altered, chlorite-amphibole-sericite-ankerite (Vézina et al., 2015).
Gabbro	Concordant, 1 to 10 m thick sub-conformable intrusions. Dark green with relics of ophitic- sub-ophitic textures giving a spotty appearance. Massive to weakly foliated. Intrusive contacts with host rocks. Affected by multi-phases fractures sets.
Rhyolite-dacite	Pale green, aphanitic. Strongly affected by deformation effects inside Rivière France corridor. Boudins style tectonic fragments were created by the competency contrast between weakly carbonatized felsic material and strongly carbonatized mafic rocks. Massive facies show locally vesicular or porphyritic textures while laminated structure may recall a tuffaceous origin. Common pyrite rich layers, lenses or stringers shows evidences of remobilisation by deformation.
Quartz-feldspathic porphyry dykes (QFP)	1 to 3 m thick sills and dykes showing intrusive or fracture contacts. Their concentration identifies the summital environment of the Gilman Formation. Emplacement age at 2,710.2 ± 0.8 m.y. (Vézina et al., 2015). Two generations observed on same outcrops: <ul style="list-style-type: none">- Early pinkish foliated phase. Feldspathic matrix with 20% K feldspar and 10% 5 to 10mm quartz phenocrysts.- Greyish underformed phase. Granitic composition with 50% 1-2 mm quartz-plagioclase-K feldspar-amphibole-biotite phenocrysts assemblage.
Lamprophyre Dykes	10 to 60 cm thick dark green sub-conformable dykes showing a brownish weathered surface. Composed of chlorite-biotite-carbonate aggregates. Intrusive cross cutting contacts on quartz-feldspathic porphyry dykes, gabbro and volcanics.
Sediments	Rarely exposed. Visible on Monexco No.2 stripping as a pluri-metric layer at the contact between gabbro and quartz-feldspathic porphyry dykes. Composed of flyschic fine dirty wacke with sulphides bearing graphitic mudrock.

Monexco Gold Showing Area, Deformation and Structures	
Deformation features	Description
East-west shearing	High strain zones of Rivière France corridor with an apparent thickness of 400 m. Composed of an heterogenous network of strongly dipping anastomosed high strain zones. Observed throughout stripping areas. Individual east-west structures showing inverse-dextral movement associated with the transposition of primary structures.
North-east faults and fractures	Common N010 to N050 degrees faults and fractures. Sub-vertical to 50 degrees east dipping.

TABLE 9 : GEOLOGICAL DESCRIPTION OF THE MONEXCO GOLD SHOWING AREA.

A. Pillowed andesite. B., Rhyolitic sliver included in an andesitic environment, Rivière France deformation zone. C. Mudrock layer inside the Gilman Formation, southern limit of Rivière France deformation zone. D. Undeformed quartzo-feldspathic porphyry dyke in contact with graphitic mudstone and a gabbro sill, southern limit of the Rivière France deformation zone. E. Strongly dipping carbonatized and veined segment of the Monexco gold system.

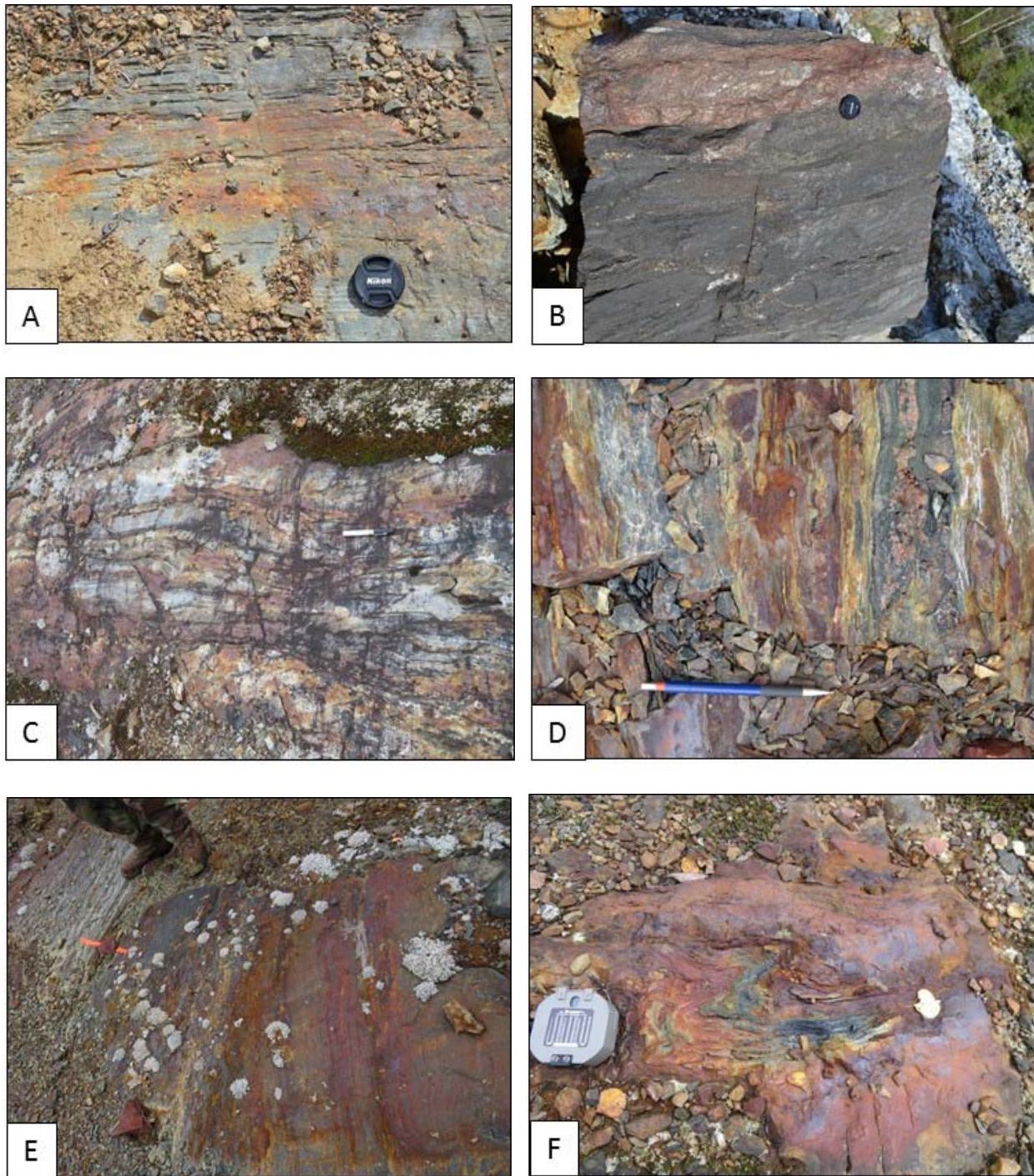
FIGURE 19 : PHOTOS PRESENTATION OF THE MONEXCO GOLD SHOWING AREA.

“McCorkill” (France Est Gold Showing) Area

The northern part of the Monexco claims block was previously identified as the McCorkill property in 2002 when Typhoon took position. The structural pattern of the area is controlled by the Lac France pluton which created a semi-circular inflection of rocks units. North to northeast fracturing and faulting events like the Mistassini Fault, which cutting the pluton east of the property, affects lithological contacts at the property map scale. The geoscientific documentation about the area is minimal due to poorly outcropping conditions. Current Sigeom mapping should be considered incomplete with many arbitrary sedimentary contact corresponding to map frontier between NTS sheets. The regional map draw by Daigneault et al. (1990) put the Blondeau Formation in contact with the Lac France Pluton.

First hand observations come essentially from a unique 275 m long stripping opened by Shaller Claims Group during the eighties. Also, scattered historical drill holes implanted on electromagnetic anomalies give useful information concerning potentially mineralized units and faults positions.

The lithological and structural environment observed is distinctive from the Gilman Formation hosting Monexco gold system 1.5 km southward. The gap of information between the two sectors avoids any easy model about the location of stratigraphic limits. The France Est stripping and few peripheric outcrops indicate that 100 to 200 m thick sedimentary layer put a mark on a contact between intermediate to felsic volcanics to the south and basaltic and andesitic rocks to the north. All rocks are ductily deformed with a sub-vertical stretching lineation. The metamorphic grade reached at least the upper greenschist facies as indicated by the amphibole - garnet assemblage in basalt.


The identification of semi-massive sulfides on outcrops in close association with siliceous facies and potential iron formation may correspond to characteristics used to describe the Waconichi Formation. Daigneault R., et al. (1990) had identified slivers of the Waconichi Formation 7 km north-westward and along strike from France Est stripping along the Faribault Fault. This inverse fault created a structural contact between the Bordeleau Formation to the north and the Gilman Formation to the south.

McCorkill Stripping Area (France Est Gold Showing), Lithological Description	
Lithology	Description
Amphibolitized basalt or andesite.	Green to black. Composition dominated by amphibole with garnet locally observed in strong layering. Structures and compositional layering indicating pillow or brecciated volcanic facies. Sulfides rich environment described in drill holes (ref.GM-04609).
Amphibolite	Black to dark green. Finely granular to coarsely crystalline, massive to slightly layered. Hornblende and pyroxene minerals assemblage.

Volcano-sedimentary rocks (tuff), felsic composition.	Pale grey to dark grey, generally aphanitic. Apparent pseudo-bedding corresponding to sensible variations of composition. Core description indicating a sulfides rich environment (GM-04609).
Wacke-mudrock	Dark grey to light grey. Primary bedding preserved indicating a flyschic environment. Identified by granulometric and compositional variations. Gradual contact with surrounding volcano-sedimentary rocks.
Graphitic mudrock	Pitch black. Siliceous mudrock containing a fraction of micro-crystalline graphite. Granoblastic pyrite can reach 15% of volume.
Quartzo-feldspathic porphyry dykes	Grey, Equigranular. 1 to 3 meters thick feldspathic dykes. Altered and recrystallized aspect, strongly fractured.

McCorkill Stripping Area (France Est Gold Showing), Deformation and Structures	
Deformation features	Description
North-west to east-west foliation	Mineral layering developed in un competent rock units and depending on primary heterogeneities. Vertical dip generally observed. Affected by drag folding and strike slip faulting.
Shearing: drag folds, strike slip faults	Chaotic to Z shape drag folds with steeply dipping axes (50 to 70 degrees to north-west). Preferably developed along graphitic mudrock contacts.
North to north-east fracturing	Folded lithological contacts commonly fractured between N010 and N040 degrees dipping moderately to the east (40 to 50 degrees). More competent units are brecciated.

TABLE 10 : GEOLOGICAL DESCRIPTION OF THE MCCORKILL (FRANCE EST GOLD SHOWING) STRIPPING AREA.

A: Siliceous flysch fine sediments. B: Carbonate-sulfides altered iron formation, blasted block. C: Laminated felsic flow. D: Laminated mafic flows, hornblende-pyrrhotite-garnet. E: Sulfides rich competent wacke. F: Z shape drag fold in graphitic mudrock. McCorkill (France Est gold showing) stripping.

FIGURE 20 : PHOTOS PRESENTATION OF MCCORKILL (FRANCE EST GOLD SHOWING) AREA.

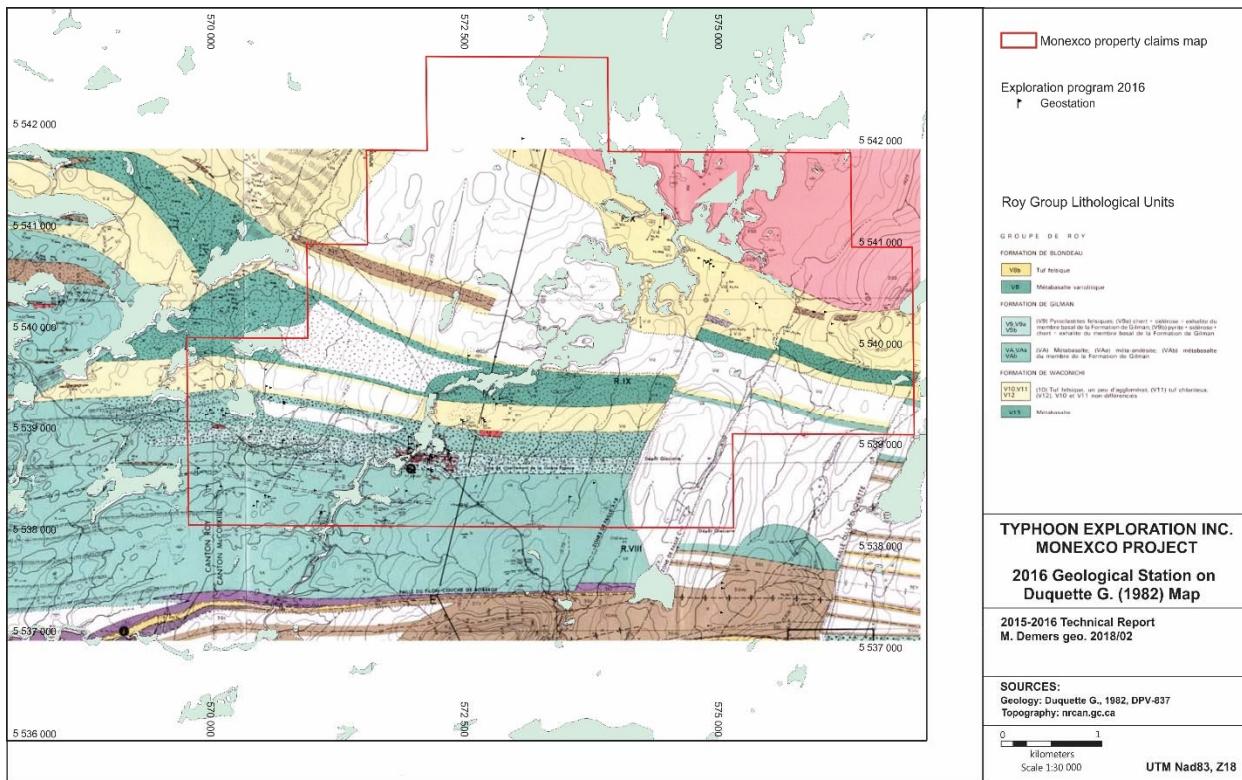


FIGURE 21 : 2016 FIELD PROGRAM GEOLOGICAL STATIONS SUPERIMPOSED ON THE GEOLOGICAL MAP FROM DPV-537 (DUQUETTE G., 1982).

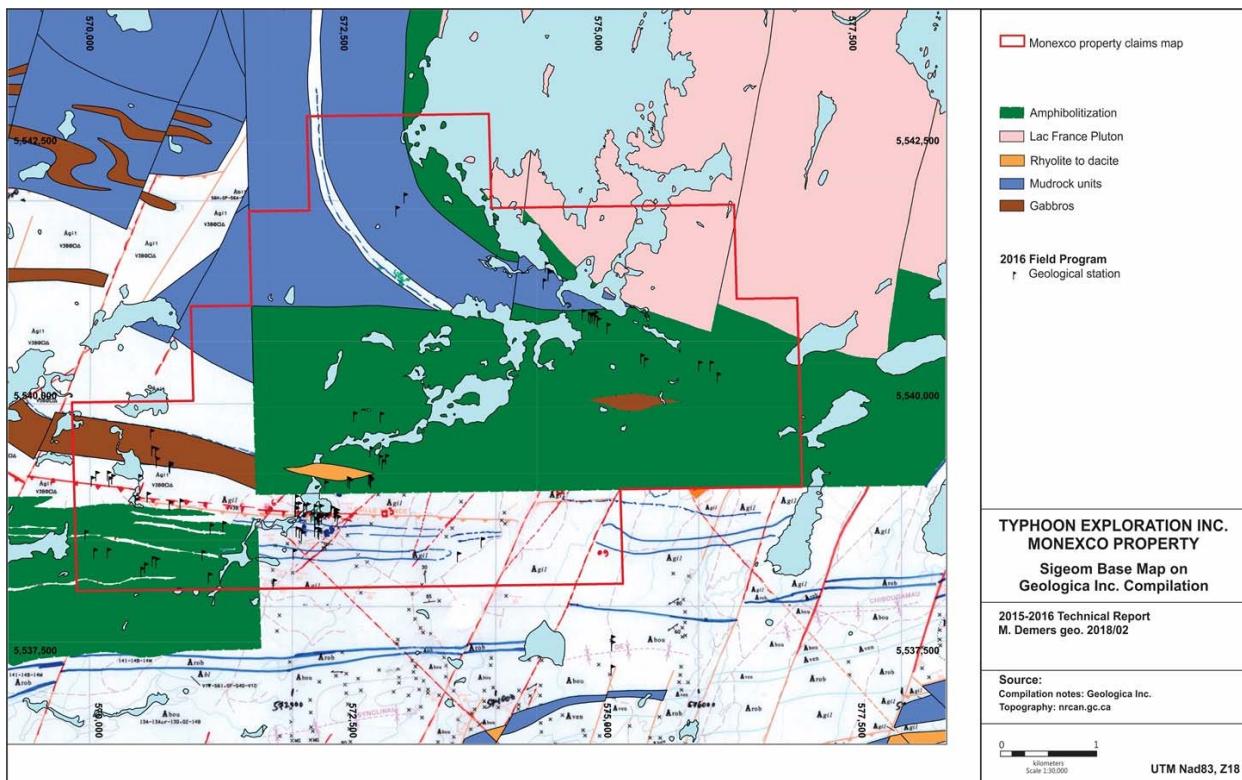


FIGURE 22 : 2016 GEOLOGICAL STATIONS SUPERIMPOSED ON THE SIGEOM THEMATIC MAP. COMPILED OF MAGNETIC ANOMALIES AND POTENTIAL STRUCTURES BY GEOLOGICA INC. (2002).

7.3 Mineralization

Sampling phases done on the property confirmed over years the gold system associated with the Rivière France area. The Monexco gold system location corresponds roughly to a mineralized field making about 0.16 km² centered on the north-east section of the Rivière France riverbed.

At the map scale, gold enrichment corresponds to a wide range of values between a few dozen ppb up to dozen grams per tonne hosted in the same veins field but having different modes of presentation in terms of veins composition, geometry and host structure.

In a different way, pyrite concentrations associated with felsic volcanics of Gilman, Blondeau, and possibly Waconichi formations could host gold enrichment at different levels, but generally below the threshold of 1 g/t. As for Monexco veins, their proximity to ductile deformation zones, quartzo-feldspathic dykes, or cross cutting north-east faults can be considered as favourability factors.

Even if gold bearing veins have not been systematically described and measured, outcrops mapping lead to 6 types of gold mineralization based on description criteria. The four types

attached to the Monexco area are in close association, each one corresponding to slight variations of style, structural and lithological environment.

Gold mineralization contexts of the McCorkill area remain spatially associated with the Monexco system by the Rivière France lineament. Otherwise, a contrasted metamorphic grade and host rocks environment give the indication of separate mineralized systems.

A systematic classification based on observation criteria should make easier the discrimination of the different types and episodes of mineralization observed on the property.

Quartz-tourmaline-pyrite veins	
Gold distribution : 0.5 - 40 g/t Au (figure)	
Host rocks and associated lithologies	Deformed sequence of basalt and andesite flows with associated tuffs injected by gabbro sills.
Structures and structural setting	Individual decametric veins, more rarely metric grouping, cross cutting east-west deformation zones exposed over 10 to 50 m. North to north-east orientation (N010 to N045 degrees), dipping east between 45 and 65 degrees.
Alteration envelope	Centered on strong iron carbonate replacement. Alteration locally fractures controlled. Tourmalinization of host rocks cross cutting all fabrics. Associated with a weak pyrite dissemination.
Gold mineralization control	At local scale: second order fractures inside an east-west shear system. At regional scale: late tectonic McKenzie type faults and shearing (Pilote 1998).

Quartz-carbonate-pyrite veins	
Gold distribution: 0.1 to 8 g/t Au (figure)	
Host rock and associated lithologies	Deformed sequence of basalt and andesite flows with associated tuffs. Gabbro sills injections.
Structure and structural setting	East-west conformable quartz-carbonate veins located preferable along competency contrasts. Centimetric to metric thick individual veins. East-west orientation, strongly dipping following the main shear fabric.
Alteration envelope	Ferro-carbonate replacement environment. Sericite forming layers close to veins. Host rocks composition dependant. Locally strong fine grained pyritization, reaching 10% in volume.
Gold mineralization control	Competency contrast associated to east-west shearing.

Deformed and altered basalts	
Gold distribution: 0,1 to 2 g/t Au (figure)	
Host rock and associated lithologies	Metric basalt flow interlayered with andesite.
Structure and structural setting	Conformable replacement to east-west main ductile fabric. Locally strongly fractured and brecciated.
Alteration envelope	Massive ankeritization associated to a strong pyritization.
Gold mineralization control	Preferential replacement of lithologies inside Rivière France deformation zone.

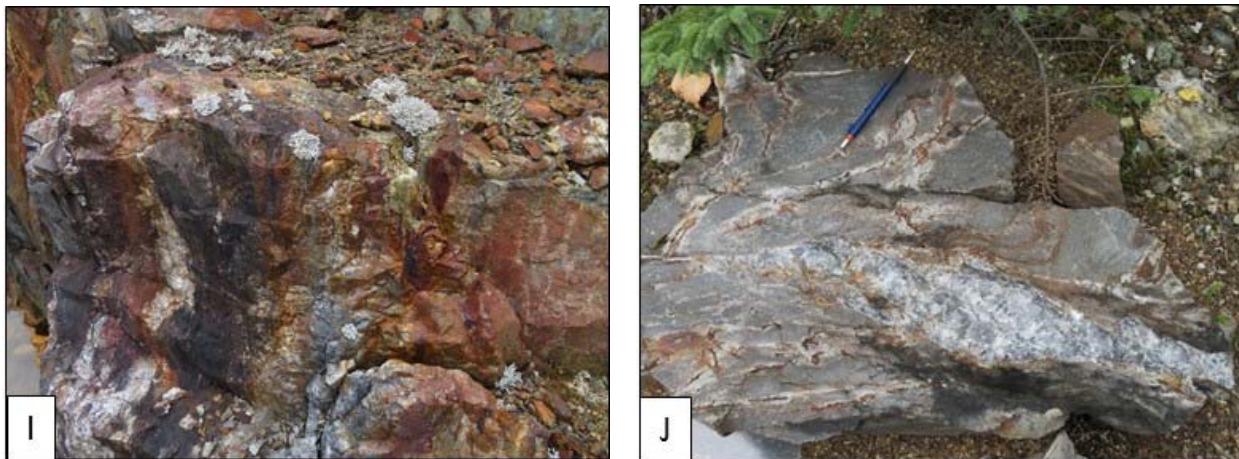
Fractured and pyritized quartzo-feldspathic porphyry dykes	
Gold distribution: 0.02 to 75 g/t Au (figure)	
Host rock and associated lithologies	Grey, 1 to 3 m thick un deformed quartzo-feldspathic porphyry dykes showing a conformable orientation to foliation. Commonly in contact with lamprophyre dykes.
Structure and structural setting	Locally affected by oriented fractures patterns.
Alteration envelope	Unaltered in appearance with all primary mineralogy visible. On the other hand, closely associated with iron carbonatization envelopes in deformation zones. Traces of pyrite.
Gold mineralization control	The proximity of north-east fracturing systems could explain the local gold enrichment seen in this type of environment.

Massive pyrite in felsic volcanoclastics	
Gold distribution: 0.1 to 1 g/t Au (figure)	
Host rock and associated lithologies	Moderately deformed andesite to dacitic flows. quartzo-feldspathic porphyry dykes often observed in proximity. More common in upper greenschist to amphibolite facies metamorphic grade.

Structure and structural setting	Conformable to the main foliation. Up to 1m meter thick granoblastic massive pyrite layers. Transposed along the main east-west to north-west shear orientation.
Alteration envelope	Strong chloritization.
Gold mineralization control	Volcanogenic origin of pyrite concentrations. Gold enrichment possibly related to the Rivière France shear system.

Quartz-sulfides veins hosted in amphibolitized sediments (France Est gold showing)	
Gold distribution: 0.02 to 1 g/t (figure)	
Host rock and associated lithologies	Wacke with graphitic mudrocks, porphyry dykes and sulfidized iron formations (?).
Structure and structural setting	Metric individual grey quartz veins, brecciated networks of centimetric quartz veins. Steeply dipping conformable envelopes constrained by lithological contacts.
Alteration envelope	Upper greenschist to amphibolite metamorphic grade environment. Silicification, potential feldspathization with late crystallization of biotite. Different generations of pyrite observed.
Gold mineralization control	Regional north-west shearing system south of Lac France Pluton. Local control possibly related to strike slip faulting inside the Faribault Fault corridor (Daigneault R. et al., 1990).

TABLE 11 : CLASSIFICATION TABLE OF MONEXCO PROPERTY GOLD MINERALIZATION STYLES.



A

B

A: Quartz-tourmaline vein controlled by a minor north-east fracture, VG stripping.

B: Fractures controlled iron carbonate alteration with quartz-tourmaline veins following north to north-east orientation. Monexco No.1 stripping.

C: Looking west quartz-carbonate vein, Monexco No.1 stripping.

D: Overview of the Monexco No.1 stripping showing the Rivière France deformation zone with iron carbonate alteration zone and associated east-west veins.

E: Preferred conformable replacement of mafic facies inside the main foliation. Contact with an iron carbonate refractory felsic unit. East-west quartz-carbonate veining can be observed inside the alteration zone in relation with cross cutting north-east fractures.

F: Detail of carbonatized and pyritized mafic unit. Boulder field north of Monexco No.3 stripping.

G: Isolated conformable quartzo-feldspathic porphyry dyke surrounded by an iron carbonate halo. Rivière France deformation zone environment, Le Pic stripping.

H: Detail on the spatial relation between quartz-carbonate veining, iron carbonate alteration and quartzo-feldspathic porphyry dyke. LePic stripping.

I: Quartz veining in contact with a sulfidized iron formation remnant observed on the France Est gold showing trench wall, McCorkill area.

J: Detail of fractured and veined wacke. Quartz veins are associated with feldspathic alteration. France Est gold showing stripping, McCorkill area.

FIGURE 23 :PHOTO PRESENTATION OF THE GOLD MINERALIZATION STYLE OF MONEXCO PROPERTY.

8. Deposit Types

The property area is part of the Chibougamau Mining Camp, mostly known for its copper and accessory gold enrichment. The cumulative production peaked at 47.8 million tonnes of ore at an average grade of 1.8 % Cu and 2 g/t for metals tonnage production of 1.6 billion pounds of copper and 3.03 million oz of gold (Leclerc, 2011). The main portion of the metal stock is contained in large sulfides veins showing a predominant pre-tectonic context with a strong connection with the local plutonic activity. A metallogenetic model specific to the Chibougamau camp was established for this type of deposit by Pilote P. et al. (1998).

Chibougamau area orogenic gold deposits respect the definition of Dubé B. et al. (2007). The syntectonic to late tectonic position of veins systems inside shear zones, which includes related hydrothermal alteration envelopes can be considered as the main deposit characteristic. In the Chibougamau context, this type of deposit is mainly developed in large mafic sills controlled by east-west ductile deformation zones. Ore deposits location corresponds to oblique breaks (north-west or north-east) cross cutting east-west trending geological units. This conjugated pattern is often the locus of intense iron carbonate alteration.

The Monexco gold showing is part of this category. The description presented by Vézina C. et al. (2015) shows many similarities with classical description of mafic hosted quartz-carbonate veins system in an orogenic context.

- The first order control corresponds to the Rivière France regional deformation zone hosting multiple events of veining and alteration.
- Secondary cross cutting structural event corresponding to north-south to north-east fractures and faults.
- Late brittle event related to gold enrichment locally above 10g/t.
- Wide iron carbonate alteration overprinting lithological contacts.

The “McCorkill” mineralized trend hosting the France Est gold showing shows a distinct combination of geological indicators. Sulfides concentrations potentially hosted in the Waconichi Formation and associated with the Faribault Fault were previously identified as volcanogenic sulfides targets. Last observations made in 2016 highlighted varied overprinting relations suggesting a more complex timing for gold mineralization.

- Ductile sub-vertical envelopes hosting remobilized sulfides are hosted in felsic tuffaceous or sedimentary rocks. Graphitic mudstone is common in this environment.
- The mineralized structure is close to a lower greenschist to upper greenschist or amphibolite transition.
- A quartz-feldspathic porphyry dykes swarm has overprinted the high strain zone event.
- Late tectonic metric to decametric quartz veins and stockworks styles blue quartz veining surrounded by iron carbonate or sericite-pyrite alteration are preferentially observed close to quartz-feldspathic dykes.

Gwillim Mine Model

The Gwillim Mine (170,000 tonne at 8 g/t gold for 43,870 oz of gold, Source: Sigeom) environment shares key characteristics with the Monexco gold system. The deposit is located less than 10 km north-West of Chibougamau or approximately 40 km west of the Monexco property.

The deposit is closely associated with the Gwillim Fault, a north-east structure putting in contact the Gilman Formation with an extremity of the Cummings sill. At local scale, the mineralized system is enclosed in a strongly carbonate altered east-west shear zone system overprinting lithological contacts. North of this structure the volcanic sequence is composed of gabbro sills of a few hundred meters of lateral extension with thickness reaching 60 m. Contacts with massive to pillow basalts are gradual. A decametric layer of graphitic tuff is running throughout the mafic sequence and be considered as marker unit (Bouchard G., 1986, Bouchard G. et al., 1984).

By comparison, the southern sector environment is more complex, split in different faults bounded lithological domains. Felsic facies observed in association with graphitic mudstone are related to the Blondeau Formation. The sequence is composed from south to north of basaltic and andesitic flows locally injected by gabbro sills, followed by felsic tuffs and mafic volcanoclastic sediments. The lateral progression of tuffaceous to brecciated felsic facies was interpreted as a syn-volcanic collapse controlled by north-south early faulting.

A swarm of quartz-feldspathic porphyry dykes was defined across a corridor of about 150 m with some individual intrusions. Contacts with mafic lavas are sharp and sericite altered. An earlier felsic dykes generation, probably inherited from the volcanic sequence, shows irregular contacts and geometry. The general orientation of a late-tectonic and un altered intrusive phase is north to north-east (N070 to N090 degrees) dipping 70 degrees south.

The Gwillim fault is the most prominent structural feature associated with the deposit. The south-west dipping structure (N250 degrees) is associated with 150 m wide damage zone. Ore lenses location corresponds to the intersection between the Gwillim Fault and an east-west, strongly north dipping, carbonate altered shear zone.

The alteration system is complex in terms of composition and intensity pattern. Early researches highlighted different episodes of veining with timing that varies from post volcanic to syn-tectonic. Earlier sulfides rich veins are associated with wide epidote-quartz-chlorite-pyrite halos. The orientation of these veins varies from north-south to north-east, both dipping east. Another set pyrite-chalcopyrite-pyrrhotite rich veins composed of shows constant near east-west orientation dipping 65 degrees north. In the Gwillim Mine context, these earlier veins carry irregular gold concentrations.

The quartz-carbonate veins system was exploited with three main veins down to a depth of 100 m, and along strike lengths varying between 100 and 130 m. Ribbons like veins are strongly controlled by east-west shearing and follow 80 degrees north dip. The combined strike length of these structures reaches 300 m with thickness inside a range of a few centimeters to up to about 6 m. In many areas these veins correspond to a coalescence of sub-parallel quartz lenses.

Alterations halos reached 1 m around veins, overprinting the carbonate-chlorite assemblage (Bouchard G., 1984).

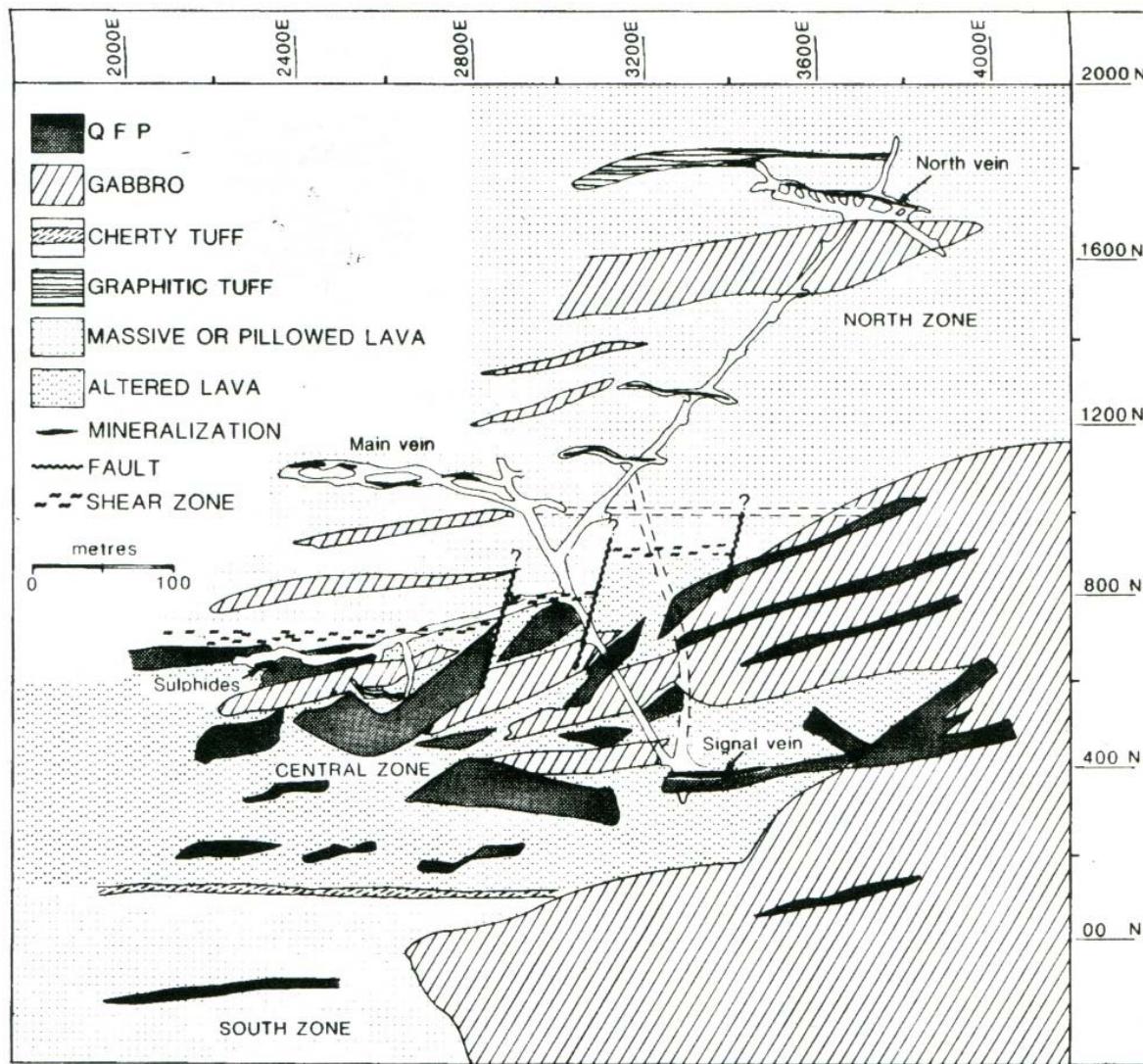


FIGURE 24 : GWILLIM MINE, 107 LEVEL PLAN GEOLOGICAL INTERPRETATION AND VEINS POSITION. FROM BOUCHARD G. ET AL., 1984.

9. EXPLORATION WORKS

9.1 Typhoon Exploration 2002-2008 Sampling Works

Typhoon is exploring the Monexco property intensively since 2002. Except blasting works done in 2005 on the Monexco No.1 stripping, all other works correspond to overburden clearing and washing. Stripping, sampling and mapping took place in 2003, 2004, and 2008. During these years Monexco gold showings area was worked with an approach combining geological mapping and channeling. Channel samples have generally 0.5 m length, a regular thickness of about 3 to 4 centimeters for a similar depth. Individual samples, generally of variable orientation, can be locally connected to form up 1.5 m composite samples cross cutting mineralized structures. Over years, the coverage can reach locally a density of 1 to 3 samples per m². A detailed geological mapping was produced for all locations with channel samples positioned.

In 2008, the detailed mapping and extensions of 16 trenches and natural outcrops was done under the supervision of Daniel Gaudreault Ing. from Geologica Groupe-Conseil Inc. 409 channel samples were taken to cover Monexco stripings area as other peripheric outcrops scattered on a sector extending from Rivière France to the property western limit, about 2 km westward (Beauregard A.J., et al., 2008).

According to the compilation works outlined in section 6, a series of 899 channel samples results can be compiled from previous exploration and technical reports (Beauregard A.J., et al., 2008, Rioux L. 2004, 2003, Gaudreault D., 2003).

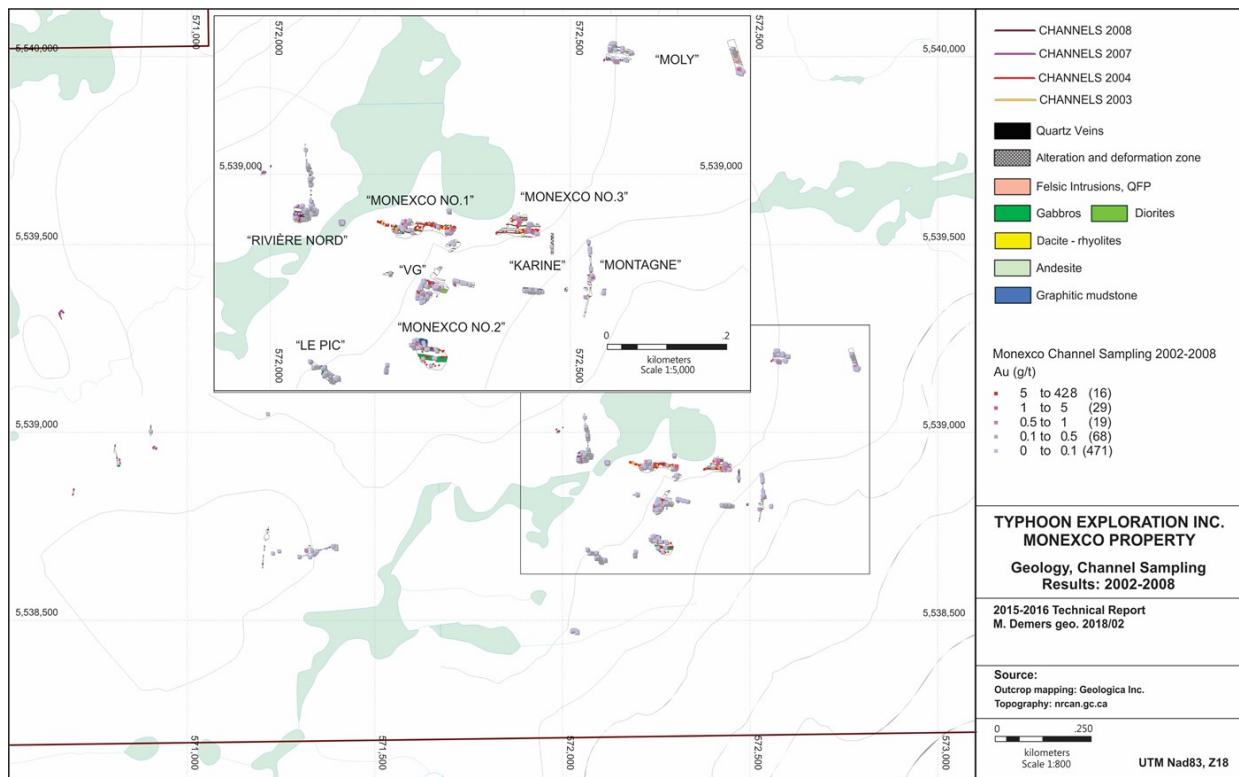


FIGURE 25 : PRE 2015 CHANNEL SAMPLING PATTERN ON THE MONEXCO PROPERTY.

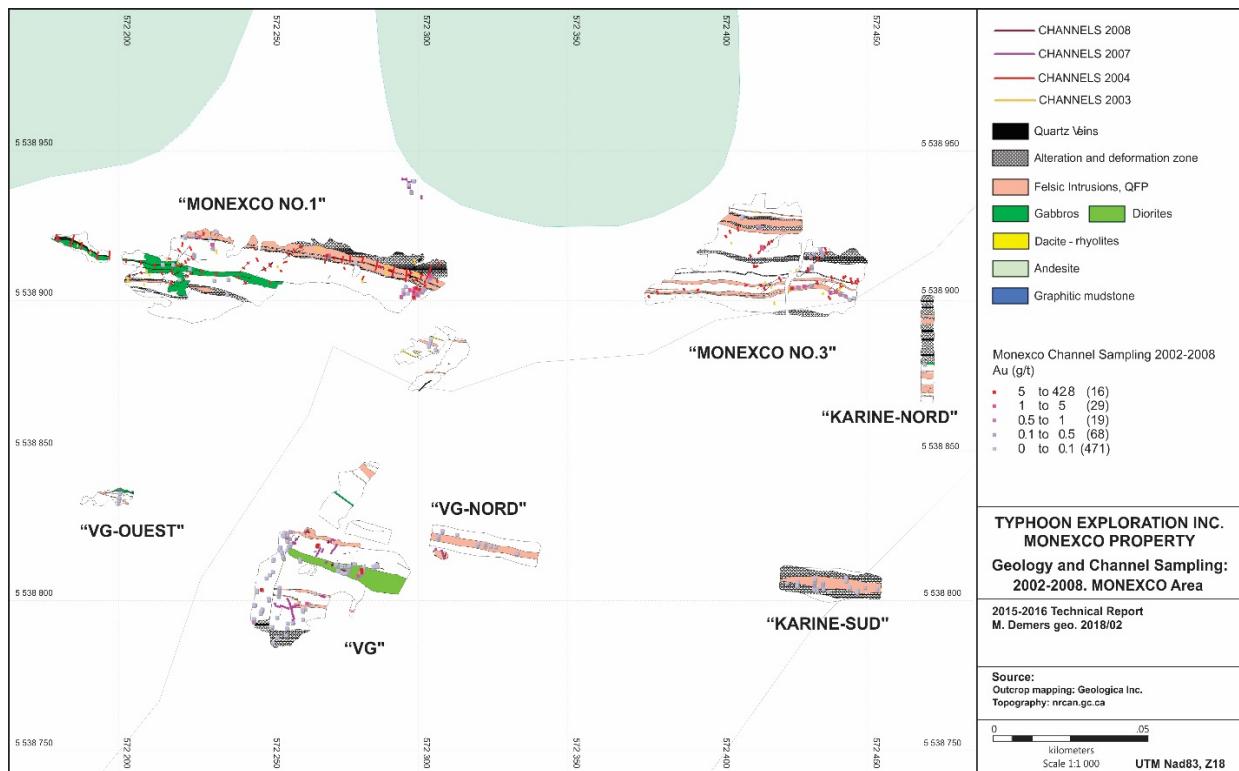


FIGURE 26 : PRE 2015 CHANNEL SAMPLING COVERAGE OF MONEXCO GOLD SHOWING AREA.

Monexco No.1, Monexco No.3, VG

The Monexco No.1 stripping dated back from first trenching works done during the fifties by Obalski Mines (1945). Series of pluri-metric quartz-tourmaline veins with north-south or north-east orientation make the connection between a porphyric quartzo-feldspathic dyke to the north and a gabbro sill to the south. 51 samples can be located at that stage which includes 18 samples with results going from 1 g/t to 42.8 g/t gold.

The lateral east-west continuity of the quartzo feldspathic porphyry dyke environment can be observed 150 m eastward on the Monexco No.3 stripping. A network of parallel north-east quartz-tourmaline veins was mapped crossing the outcrop for about 30 m before disappearing under the overburden. 23 channel samples were retraced, which includes 6 results between 1 g/t to 9 g/t gold.

About hundred meters south of Monexco No.1 and No.3 gold trend, the VG stripping shows north-east, east dipping tension veins oriented from N010 to N030 degrees with a moderate to strong east dip varying from 30 to 70 degrees. Individual quartz-tourmaline veins are 1 to 15 centimeters thick with length varying between 0.5 and 2 m. They are grouped inside a 3 to 5 m wide north-east trending envelope corresponding to a strike slip fault zone with minor displacements.

Mineralization takes the form of finely disseminated pyrite inside veins and along veins walls. Grades above 10 g/t gold obtained from individual channel samples are generally associated with visible gold occurrence. A total of 124 channel samples were taken on these outcrops, which gave 9 samples with results between 1 g/t and 16 g/t gold.

Karine Nord stripping is a 50 m long narrow trench dug to intercept the complete influence of the Monexco gold trend southward. The clearing work intercepted a thick sequence of sheared laminated basalt injected by quartzo feldspathic porphyry dykes. Very few veins were observed, and sampling was limited to one channel.

Karine South stripping is centered on a foliated east-west quartzo feldspathic porphyry dyke over a lateral distance of around 40 m in the extension of the VG trend. The mafic rocks surrounding the intrusion is strongly carbonatized and affected by a ductile fabric. The dyke itself is strongly fractured and filled by quartz-tourmaline veinlets. From a series of 27 channel samples, 4 results are between 0.2 g/t and 0.4 g/t gold.

Monexco No.2, Le Pic

Monexco No.2 and Le Pic stripping have intercepted a southern gold bearing structure related to a quartzo feldspathic porphyry dykes swarm. The Monexco No.2 is located about 75 m due south to the VG stripping while Le Pic stripping is about 60 m westward.

At Monexco No.2, 2 m thick felsic dykes were identified in association with carbonatized lamprophyre pods and dykes with an extension of 1 to 2 m. This dyke swarm is at the contact between a layer of ductily deformed sulfides bearing graphitic mudrock and an underformed gabbro sill.

A tight network of north trending short quartz veins affects most intrusions, but their gold input is limited. 43 samples have been located, including 3 samples with gold values between 1 g/t and 10.6 g/t gold. Best results were obtained from sheared quartz veins embedded in carbonate-sericite altered mafic material.

Le Pic stripping even relatively close to Monexco No.2, shows a distinct geology. The lithological sequence intercepted sequence shows from south to north: sheared basalt, intermediate tuff, gabbro sills and basalt. Two metric quartzo feldspathic porphyry dykes appear inside the basalt section. They are both closely associated with strong iron carbonatization halos (see figure 23 G:). This assemblage is uniformly affected by a strong ductile deformation which can correspond to the southern position of the Rivière France corridor. Previous authors have noted the lack of oblique fracturing in this area. 12 channel samples from a coverage of 62 samples have gold value above 0.1 g/t gold. These results are located close to quartzo feldspathic porphyry dykes in carbonatized rock.

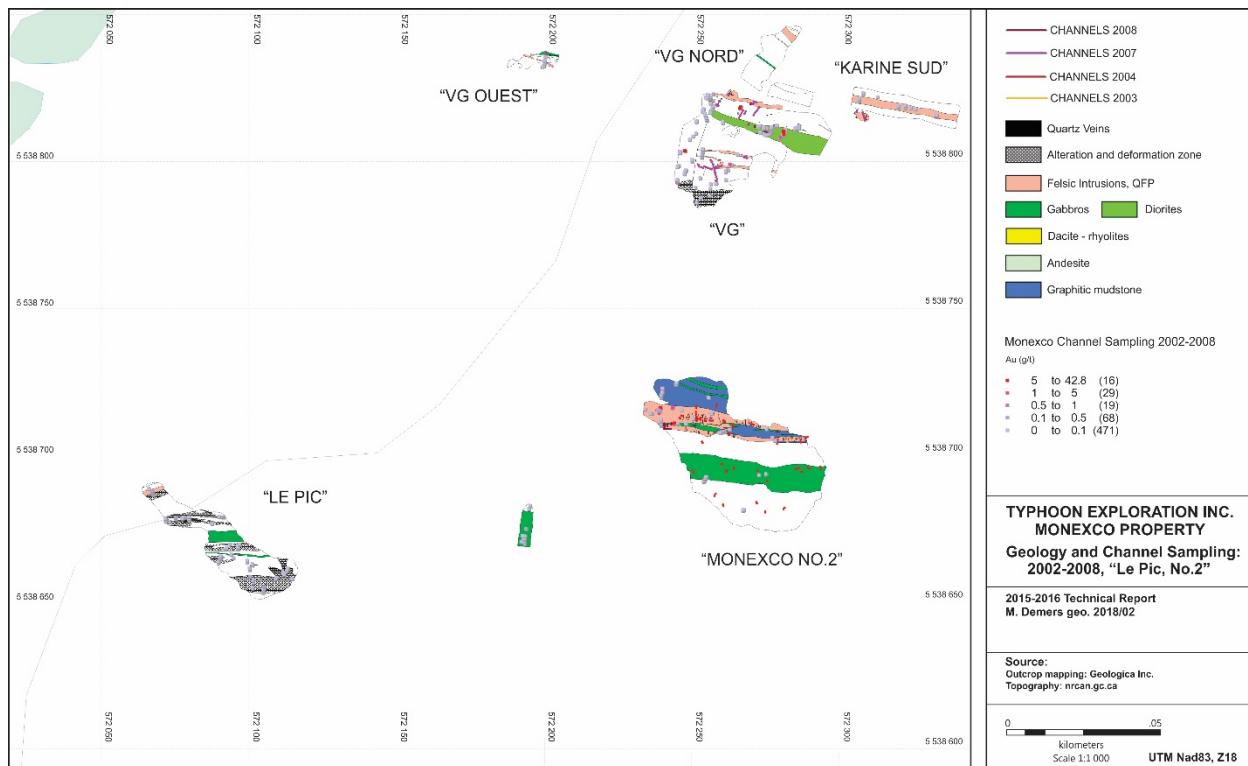


FIGURE 27 : LE PIC AND MONEXCO NO.2 STRIPPING MAPPING WITH 2002-2008 CHANNEL SAMPLING.

Moly-1, Moly-2

Moly strippings are located about 30 m north of the Monexco No.3. Moly No.1 is located around 275 m east of Rivière France eastern bank. The geology exposed on Moly No.1 is characterized by 10 m wide felsic volcanic units interlayered with basalts and andesites. This assemblage is

affected by high strain zones with porphyry and lamprophyre dykes. North-east and south-west striking quartz-tourmaline veins and veinlets with strong dip are hosted in the quartzo feldspathic porphyry dyke or concentrated in felsic rocks at the north-western limit of the stripped area. 2008 channel sampling indicates that 7 results over 48 have results between 0.1 g/t and 0.6 g/t gold.

Moly No.2 stripping exposes an altered quartzo feldspathic porphyry dyke hosted in a strongly shistosed basalt over an apparent thickness of 15 m. A strong iron carbonatization is observed close to the dyke margin. This intrusion is strongly fractured and filled by a conjugated pattern of north-east and south-west centimetric quartz veins. 2008 channel sampling showed 7 results over 47 with results between 0.13 g/t and 1.45 g/t gold.

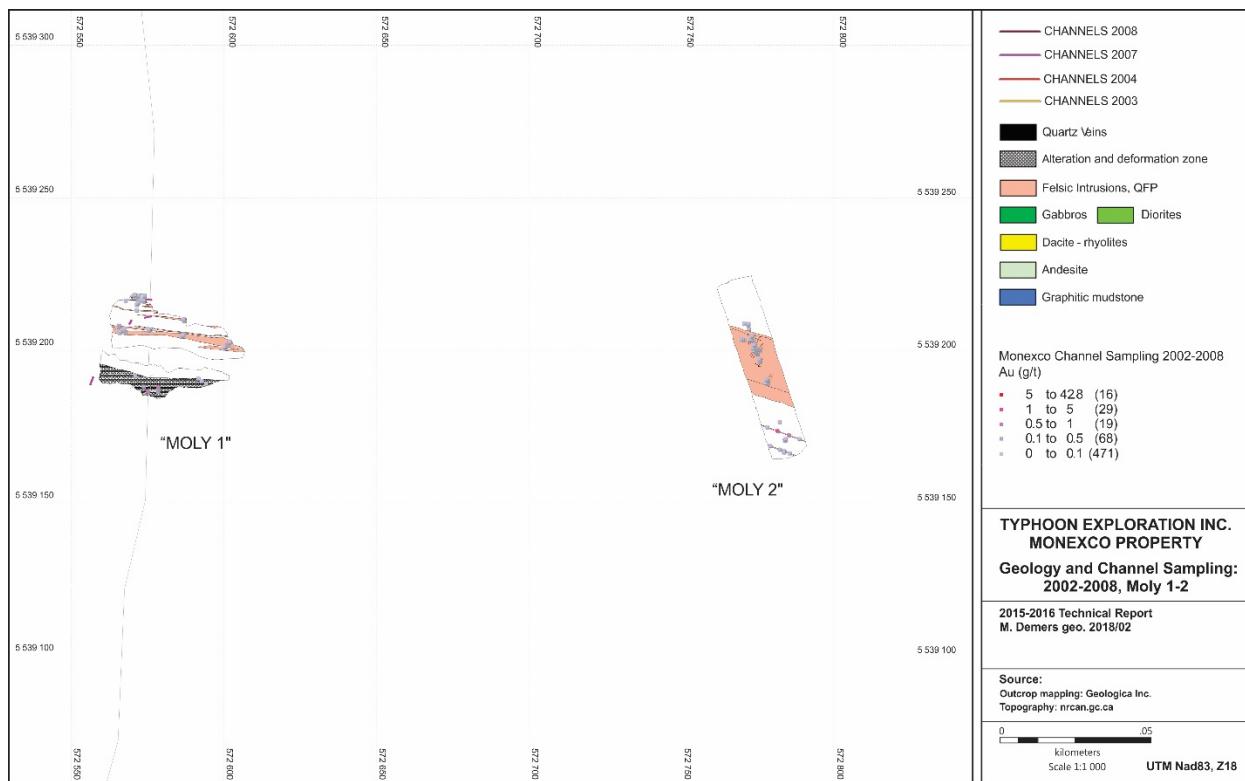


FIGURE 28 : MOLY 1 AND MOLY 2 STRIPPINGS WITH 2002-2008 CHANNEL SAMPLING.

Rivière Nord, 1WS, 1WN, Cric France

The Riviere Nord and the nearby 1 WS stripings are along strike and about 120 m westward from Monexco No. 1 works, immediately west of the Rivière France bank. Rivière Nord is centered on a gabbro-basalt contact affected by a strong iron carbonatization alteration. A quartzo feldspathic porphyry dyke is located a few meters to the north of this contact in a shistosed host rock. This environment is cross cut by multiple north-east, south-west and east-west quartz-tourmaline veins sets located along strike with the Monexco No.1 stripping. Total

of 32 channel samples were taken on Riviere Nord during the 2008 program. From that, 4 samples have gold grade between 3.1 g/t and 22.7 g/t gold.

The 1WN stripping corresponds to a series of test pits partially filled by erosion. The mapping however showed evidences of a quartzo feldspathic porphyry dykes swarm about 50 m north of Riviere Nord stripping. One channel sample returned a result of 1.3 g/t gold from a series of 20 samples taken during the 2007 program.

The area identified as "Cric-France" corresponds to the shoreline of the Rivière France face to face of Monexco No.1 and 1WN stripped areas. Quartz-tourmaline veins sets sampled are hosted in a sequence of intermediate tuffs and basalt. From 18 channels compiled, one result is above 1 g/t gold and 7 other samples returned grades between 0.1 and 0.6 g/t gold.

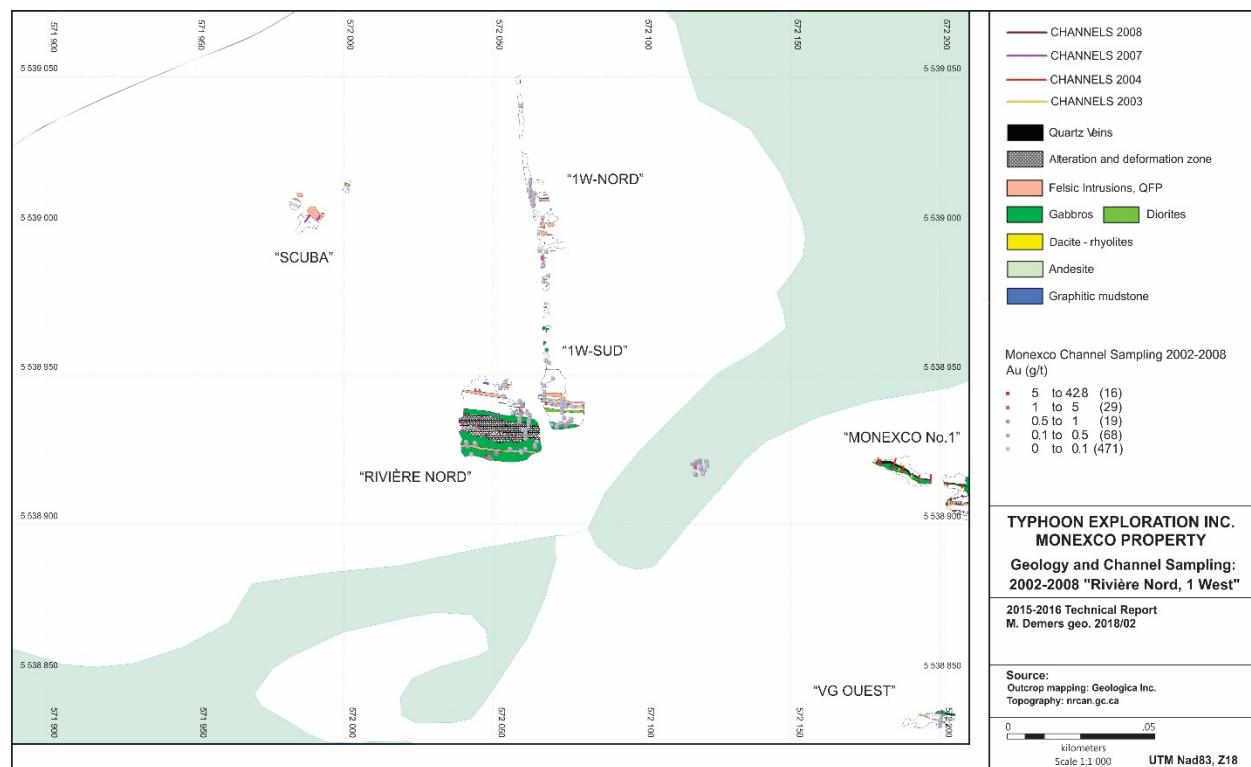


FIGURE 29 : SCUBA, 1WN, 1WS, RIVIERE NORD, CRIC FRANCE MAP WITH 2002-2008 CHANNEL SAMPLING.

Montagne, Karine Nord, Karine Sud

The Montagne stripping was open over 150 m following a roughly north-south line to intercept the whole package of deformed and altered rocks surrounding VG and Monexco gold trend, about 75 m east of known showings. Two other narrow strippings; Karine Nord and Karine Sud, targeted the quartzo feldspathic porphyry dykes swarm at mid distance. These works intersected a series of high strain zones with embedded dykes. 46 channel samples were taken

on these three stripping, mostly located on dykes contacts. One significant result of 2.9 g/t Au was obtained on Montagne.

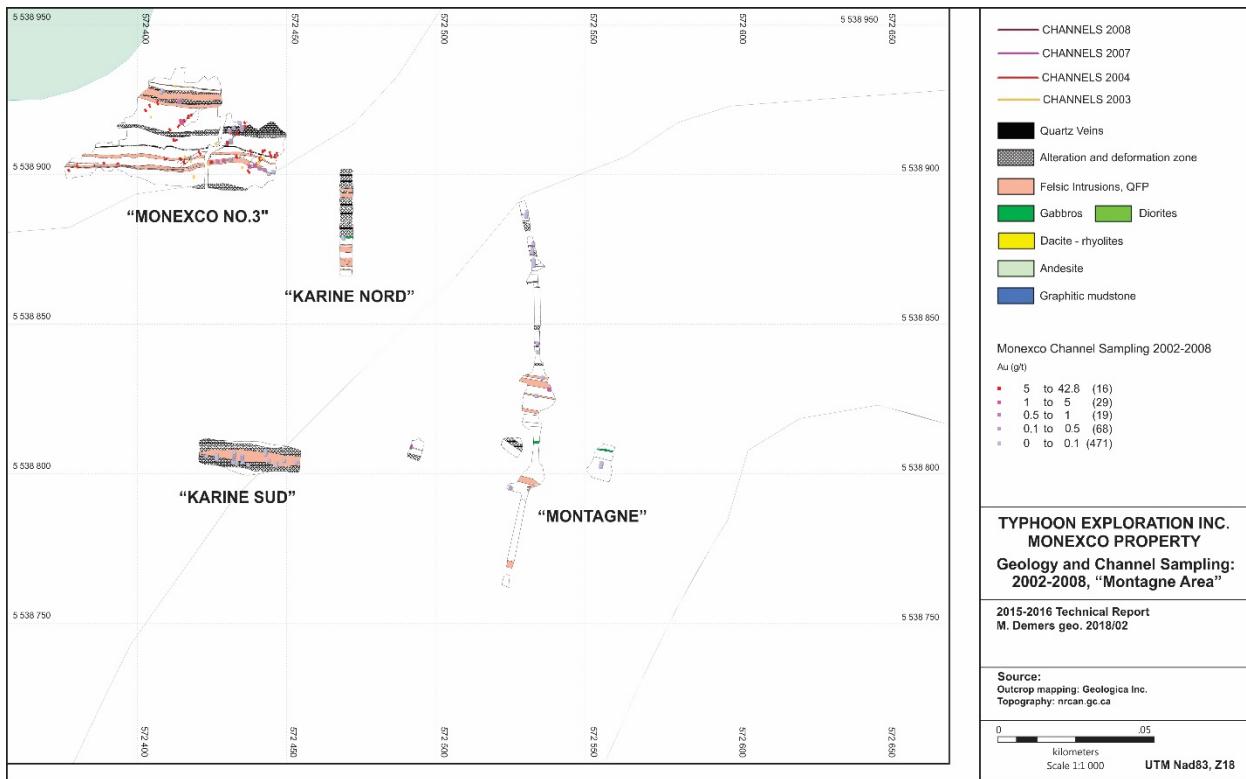


FIGURE 30 : MONTAGNE, KARINE SOUTH AND NORTH STRIPPINGS WITH 2002-2008 CHANNEL SAMPLING.

9.2 2015 and 2016 prospecting and sampling

9.2.1 2015 Field Works

A prospecting and sampling crew was mobilized from June to October 2015. This phase of works was split between freelance prospecting across the property and concentrated works on the Monexco showing stripped area. A total of 169 grab samples and 12 channel samples were collected across the property during this phase. All samples were assayed for gold by fire assaying and assayed for series of 41 elements obtained by aqua regia digestion.

9.2.2 2016 Field Works

The prospecting crew was mobilized from May 15th to September 30th 2016. During this period, 434 chip samples from outcrops and 181 samples from boulders were collected and assayed for gold by fire assaying. This terms group glacial boulders, floating rocks detached from outcrops by surface erosion, and angular fragments of local provenance observed on Rivière France bed. This approach was chosen instead of channelling to increase the density of samples on existing outcrops for defining enrichment trends. Recent works showed the possible spatial correlation between north east faults and associated veins sets giving gold values on individual samples above 10 g/t gold (Beauregard A.J., et al., 2008).

At the same time, the former McCorkill property was integrated to exploration works planning. Other property areas were covered during this phase of works, including the direct eastern extension of the Monexco gold system, which had been minimally covered due to thicker overburden.

101 geological stations were established during 2016 program to validate the geological model. Each station groups observations done on lithologies, structures, alteration assemblages and possible relation between all these elements with gold mineralization.

The reader should be aware that composite sampling is a way to evaluate locally the gold value of a specific geological context. By any way, a cluster of results can be used to put a continuity of the mineralized system over an area.

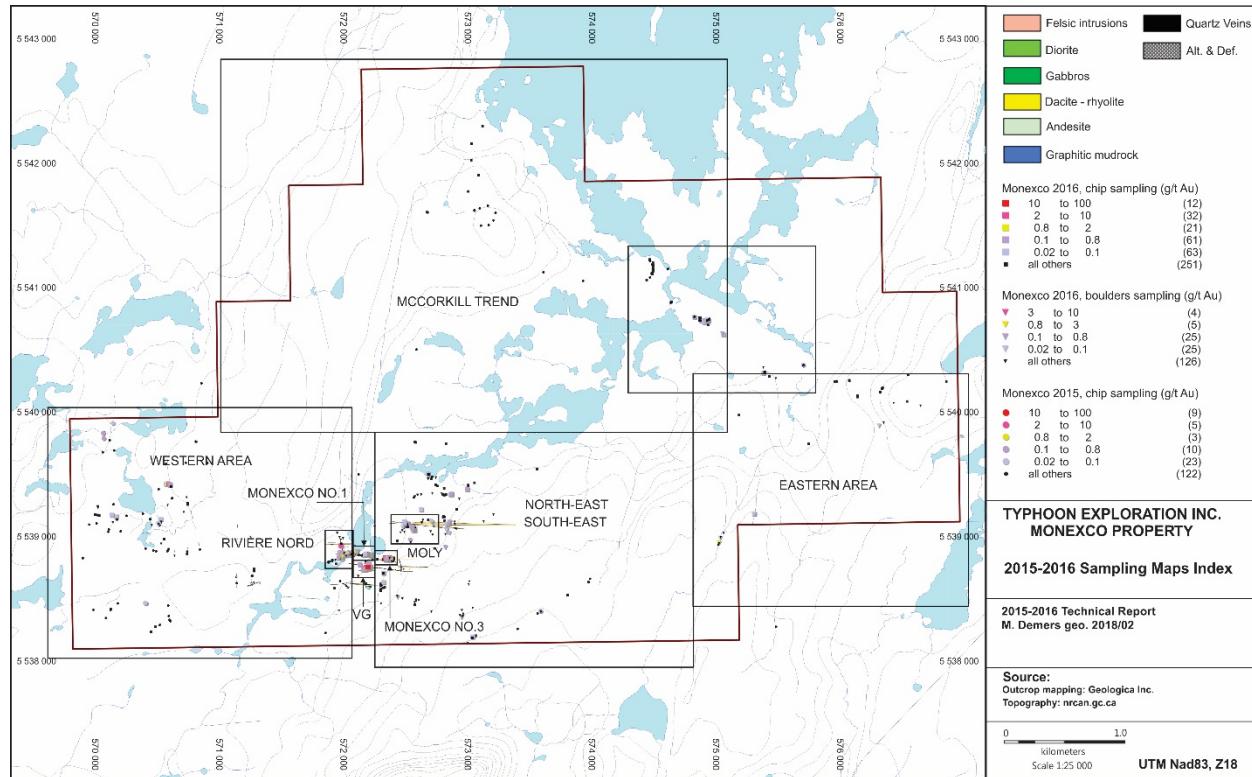


FIGURE 31 : 2015-2016 SAMPLING MAP INDEX.

Monexco No.1

The sampling was concentrated on the two areas sampled in 2005 for a gold recovery test. The test used material from two blasted trenches located where north-south to north-east veins cross cut the main east-west Monexco trend. 25 kg of vein material was recovered and processed through a gravity circuit. The weighted average head grade was 126.8 g/t.

Composites samples were taken close to blasted trenches where parallel north-east veins were observed outside excavation walls to evaluate the halo effect around main sampled veins. Areas north and south of the stripping were prospected carefully to identify potential parallel quartzo feldspathic porphyry dykes and associated quartz veining. Westward, The Rivière France banks were prospected at the end of the summer following the low tide water level.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 172m E to 572 325m E, 5 538 850m N to 5 538 950m N.

The sampling coverage included 52 samples. 41 samples originate from the stripped bedrock. 11 samples are boulders collected along Rivière France bank.

The Monexco main structure commonly hosts east-west shears veins and occasionally fractured quartzo feldspathic porphyry dykes. Most sampling was concentrated close to the main quartzo feldspathic porphyry dyke where oblique north-south to north-east extensional quartz-tourmaline veins intercept the dyke. Veins measurements gave an average orientation of 336 degrees dipping 52 degrees to the west south-west. 9 samples over 41 returned results between 1.235 and 26.9 g/t gold, and 9 results are inside the 0.1 to 0.6 g/t range.

- Angular quartz-tourmaline decimetric blocks were collected along the Rivière France shore. Their abundance increases in the alluvial sediment slightly upstream to the Monexco No.1 stripping. One boulder sample returned 3.1 g/t gold, and a group of 6 samples returned grades between 0.1 and 0.9 g/t gold. Any bedrock source was discovered yet upstream to the sampling position, the overburden coverage increasing sharply north of the stripping.

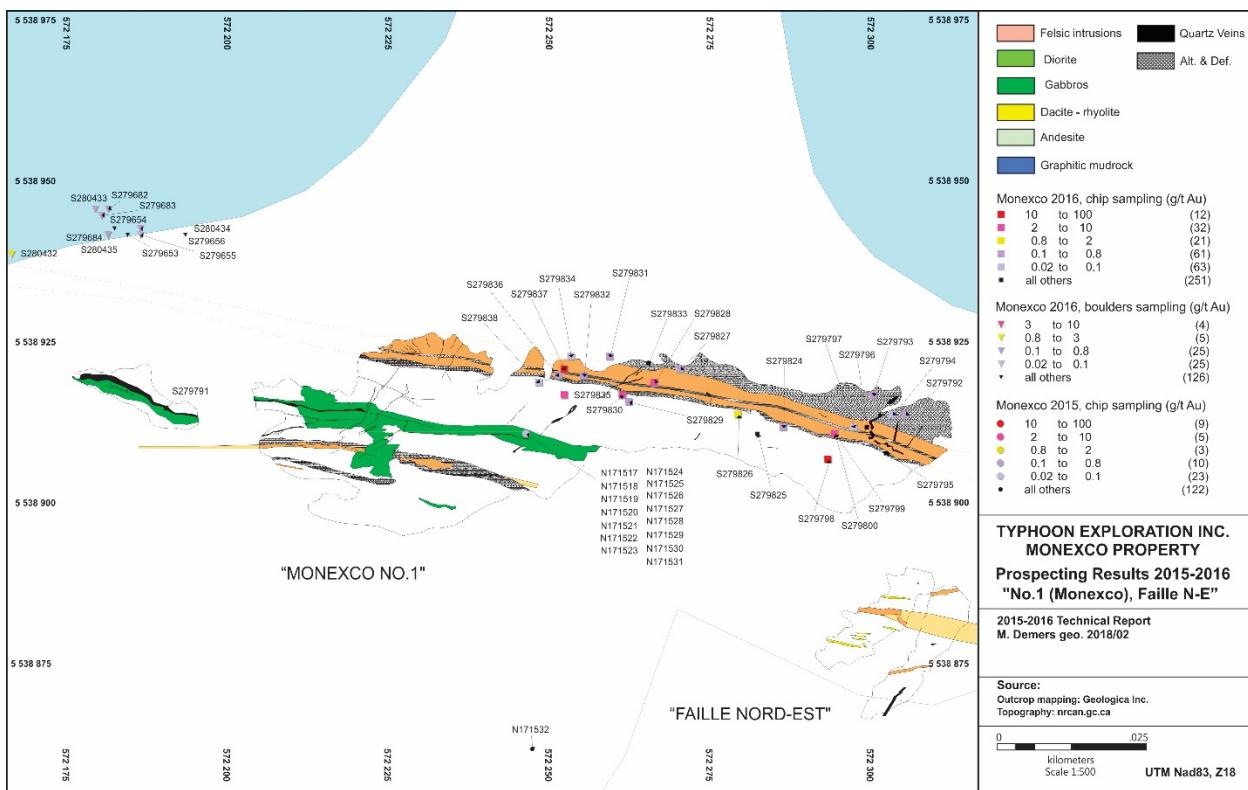


FIGURE 32 : MONEXCO NO.1 STRIPPING AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

STATION	SITE	UZ18-EAST	UZ18-NORD	SIGEOM CODE	DESCRIPTION	STRUCTURE	TYPE
020616-4	Monexco-1	572234	5538909	V3-I3	Quartzo feldspathic porphyry dyke in a mafic host rock.	050/80 085/85 330/63	Fr VN VN
030616-1	Monexco-1	572293	5538911	CB3	Western limit of a fractures zone hosting quartz-tourmaline veins.	325/55 355/37	VN VN
030616-11	Monexco-1	572398	5538896	CT	Western limit of a carbonate alteration zone, south bounded by intermediate to felsic volcanics.	-	-
030616-12	Monexco-1	572430	5538879	R1-Fr	Quartz-tourmaline parallel veins inside a metric fractured envelope.	060/62 045/85	VN Fr
210716-1	Monexco-1	572162	5538927	CB3	Mafic host rock affected by a layered sub-vertical foliation.	-	-

TABLE 12 : 2016 GEOLOGICAL STATIONS, MONEXCO NO.1 STRIPPING.

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
NO.1	N171517	GS	2015	572248	5538912	0.01
NO.1	N171518	GS	2015	572248	5538912	26.9
NO.1	N171519	GS	2015	572248	5538912	0.143
NO.1	N171520	GS	2015	572248	5538912	0.04
NO.1	N171521	GS	2015	572248	5538912	0.024
NO.1	N171522	GS	2015	572248	5538912	0.018
NO.1	N171523	GS	2015	572248	5538912	0.008
NO.1	N171524	GS	2015	572248	5538912	0.094
NO.1	N171525	GS	2015	572248	5538912	0.032
NO.1	N171526	GS	2015	572248	5538912	0.056
NO.1	N171527	GS	2015	572248	5538912	0.01
NO.1	N171528	GS	2015	572248	5538912	0.064
NO.1	N171529	GS	2015	572248	5538912	0.074
NO.1	N171530	GS	2015	572248	5538912	0.071
NO.1	N171531	GS	2015	572248	5538912	0.038
NO.1	N171532	GS	2015	572249	5538863	0.009
NO.1	S279653	BLD	2016	572186	5538943	<0.005
NO.1	S279654	BLD	2016	572184	5538944	<0.005
NO.1	S279655	BLD	2016	572188	5538943	0.032
NO.1	S279656	BLD	2016	572195	5538943	<0.005
NO.1	S279682	RB-BLD	2016	572183	5538947	0.283
NO.1	S279683	RB-BLD	2016	572182	5538946	0.135
NO.1	S279684	RB-BLD	2016	572183	5538943	3.09
NO.1	S279791	CS	2016	572192	5538916	<0.005
NO.1	S279792	CS	2016	572307	5538915	0.102
NO.1	S279793	CS	2016	572302	5538918	0.603

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
NO.1	S279794	CS	2016	572305	5538915	0.073
NO.1	S279795	CS	2016	572304	5538909	0.007
NO.1	S279796	CS	2016	572301	5538913	<0.005
NO.1	S279797	CS	2016	572299	5538913	0.024
NO.1	S279798	CS	2016	572295	5538908	12.25
NO.1	S279799	CS	2016	572296	5538912	1.505
NO.1	S279800	CS	2016	572296	5538912	2.57
NO.1	S279824	CS	2016	572288	5538913	0.174
NO.1	S279825	CS	2016	572284	5538912	0.018
NO.1	S279826	CS	2016	572281	5538915	1.235
NO.1	S279827	CS	2016	572272	5538922	0.174
NO.1	S279828	CS	2016	572268	5538920	9.05
NO.1	S279829	CS	2016	572264	5538917	0.561
NO.1	S279830	CS	2016	572263	5538918	3.88
NO.1	S279831	CS	2016	572261	5538924	0.206
NO.1	S279832	CS	2016	572257	5538921	0.136
NO.1	S279833	CS	2016	572267	5538923	0.008
NO.1	S279834	CS	2016	572255	5538924	0.068
NO.1	S279835	CS	2016	572254	5538918	6.57
NO.1	S279836	CS	2016	572253	5538921	0.249
NO.1	S279837	CS	2016	572254	5538922	10.35
NO.1	S279838	CS	2016	572250	5538920	0.02
NO.1	S280432	RB-BLD	2016	572168	5538940	0.915
NO.1	S280433	RB-BLD	2016	572181	5538947	0.105
NO.1	S280434	RB-BLD	2016	572188	5538944	0.6
NO.1	S280435	RB-BLD	2016	572183	5538943	0.322

GS: grab samples, CS: composite samples, BLD: glacial boulders, RB-BLD: river bed boulders.

TABLE 13 : 2015-2016 SAMPLING COMPILATION, MONEXCO NO.1 STRIPPING AREA.

Rivière Nord Stripping Area

The sampling coverage is centered on the northern side of the Rivière France and along strike with the Monexco No.1 stripping. It represents 71 samples split between 59 grab and composite bedrock samples and 12 boulders samples. Sampling is located on the original Rivière Nord stripping, and along the river shoreline. A series of old stripping works identified as 1 NW trench were revisited where a new quartzo feldspathic porphyry dyke associated with mineralized quartz veins was identified. Manual stripping cleared a dyke section about 35 m north of Rivière Nord original stripping.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 025m E to 572 175m E, 5 538 875m N to 5 539 000m N.

- Rivière Nord sampling focused on thin quartzo feldspathic porphyry dykes hosted in an iron carbonatized high strain zone located at the southern limit of the cleared area. This environment shows north-east parallel centimetric to decimetric quartz-tourmaline veins intersecting east-west dykes. The partly revegetated stripping made difficult the evaluation of its southward continuity. 23 composite samples returned 6 gold assays between 1.0 and 6.1 g/t inside an area covering around 20 m of strike length.
- The eastern continuity of Rivière Nord stripping was explored along the river high tide line. An abundant collection of quartz veins blocks and sulfides bearing fragments were found along 100 m section of the river that crosses at high angle the Monexco gold trend. Observations made on the river rocky shoal showed that some of these veins follow the west north-west orientation of the inferred main gold trend. 47 samples were taken from

this sampling area, mostly boulders and detached river bed blocks hosting quartz veins or composed entirely of vein material. 11 samples returned grades from 1.2 g/t to 19.15 g/t gold, 7 other samples are mineralized at the height of 0.1 g/t to 0.9 g/t gold.

- The overburden thickness is increasing sharply north of the main trench. The series of test pit are now partly filled letting scattered sampling possibilities. A quartzo feldspathic porphyry dyke uncovered during the 2007 program was manually shovelled to allow minimal sampling. Three bedrock samples returned 2.3 g/t, 4.35 g/t and 9.5 g/t gold.

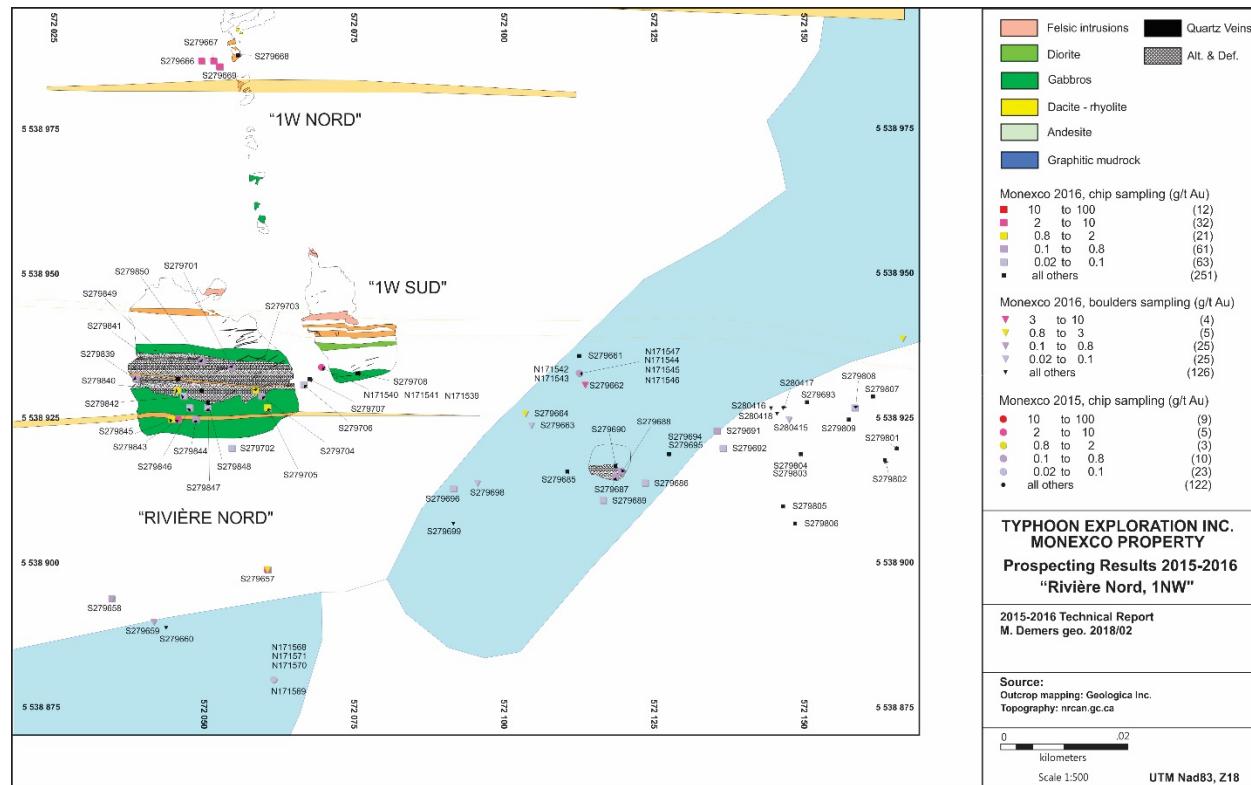


FIGURE 33 : RIVIERE NORD STRIPPING AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

Technical Report on the Monexco Property, McCorkill Township, Chibougamau, Québec

STATION	SITE	UZ18-EAST	UZ18-NORD	SIGEOM CODE	DESCRIPTION	STRUCTURE	TYPE
030616-2	RivièreNord	572048	5538933	CB3	Strong carbonatization observed over an area of about 20 metres.	070/75	VN-FR
						048/75	VN-FR
030616-3	RivièreNord	572077	5538936	I1	Strongly carbonate-sericite altered quartz-feldspathic dyke.	090/82	S0
						257/57	Fr
210716-1	RivièreNord	572162	5538927	CB3	Sub-vertical foliation affecting a mafic host rock.	-	-
210716-2	RivièreNord	572045	5538896	R1	Quartz-tourmaline vein with pyrite	-	-
220716-2	RivièreNord	572051	5539005	V2tu	Tuffaceous pyrite rich material forming a 0.2 metre band in a ductily deformed environment.	-	-
230716-3	RivièreNord	572129	5538920	I1-R1	Near north-south to N040 degrees extensional quartz-tourmaline veins. North-south influence limited by a foliated pink quartz-feldspathic porphyry dyke.	-	-
240716-1	RivièreNord	572050	5538887	V2	Shistosed andesite	090/80	S1

TABLE 14 : 2016 GEOLOGICAL STATIONS, RIVIÈRE NORD STRIPPING AREA.

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
RIV.NORD	N171539	GS	2015	572071	5538935	0.02
RIV.NORD	N171540	GS	2015	572071	5538935	6.13
RIV.NORD	N171541	GS	2015	572071	5538935	2.32
RIV.NORD	N171542	GS	2015	572114	5538934	1.465
RIV.NORD	N171543	GS	2015	572114	5538934	2.23
RIV.NORD	N171544	GS	2015	572114	5538934	19.15
RIV.NORD	N171545	GS	2015	572114	5538934	1.06
RIV.NORD	N171546	GS	2015	572114	5538934	9.31
RIV.NORD	N171547	GS	2015	572114	5538934	0.5
RIV.NORD	N171568	GS	2015	572063	5538881	0.038
RIV.NORD	N171569	GS	2015	572063	5538881	<0.005
RIV.NORD	N171570	GS	2015	572063	5538881	0.318
RIV.NORD	N171571	GS	2015	572063	5538881	0.023
RIV.NORD	S279657	CS	2016	572062	5538900	2.12
RIV.NORD	S279658	BLD	2016	572036	5538895	0.102
RIV.NORD	S279659	BLD	2016	572043	5538891	0.228
RIV.NORD	S279660	BLD	2016	572045	5538890	0.006
RIV.NORD	S279661	CS	2016	572114	5538937	<0.005
RIV.NORD	S279662	BLD	2016	572115	5538932	6.43
RIV.NORD	S279663	BLD	2016	572106	5538925	0.086
RIV.NORD	S279664	BLD	2016	572105	5538927	1.17
RIV.NORD	S279666	CS	2016	572051	5538988	2.31
RIV.NORD	S279667	CS	2016	572053	5538988	4.35
RIV.NORD	S279668	CS	2016	572057	5538989	0.007
RIV.NORD	S279669	CS	2016	572054	5538987	9.5
RIV.NORD	S279681	CS	2016	571333	5538750	0.006
RIV.NORD	S279685	CS	2016	572112	5538917	<0.005
RIV.NORD	S279686	CS	2016	572125	5538915	0.057
RIV.NORD	S279687	CS	2016	572120	5538916	0.116
RIV.NORD	S279688	CS	2016	572121	5538917	0.303
RIV.NORD	S279689	CS	2016	572118	5538912	0.022
RIV.NORD	S279690	CS	2016	572120	5538918	0.015
RIV.NORD	S279691	CS	2016	572137	5538924	0.333
RIV.NORD	S279692	CS	2016	572138	5538921	0.035
RIV.NORD	S279693	CS	2016	572152	5538929	0.012
AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
RIV.NORD	S279694	CS	2016	572129	5538920	<0.005
RIV.NORD	S279695	CS	2016	572129	5538920	<0.005
RIV.NORD	S279696	CS	2016	572093	5538914	0.026
RIV.NORD	S279698	RB-BLD	2016	572097	5538915	0.023
RIV.NORD	S279699	RB-BLD	2016	572093	5538908	<0.005
RIV.NORD	S279701	CS	2016	572056	5538935	0.78
RIV.NORD	S279702	CS	2016	572056	5538921	0.045
RIV.NORD	S279703	CS	2016	572060	5538931	0.884
RIV.NORD	S279704	CS	2016	572061	5538930	0.544
RIV.NORD	S279705	CS	2016	572062	5538928	1.015
RIV.NORD	S279706	CS	2016	572068	5538932	0.042
RIV.NORD	S279707	CS	2016	572069	5538933	0.009
RIV.NORD	S279708	CS	2016	572077	5538934	<0.005
RIV.NORD	S279801	CS	2016	572167	5538921	0.01
RIV.NORD	S279802	CS	2016	572165	5538919	0.01
RIV.NORD	S279803	CS	2016	572151	5538920	0.012
RIV.NORD	S279804	CS	2016	572151	5538920	0.007
RIV.NORD	S279805	CS	2016	572148	5538911	<0.005
RIV.NORD	S279806	CS	2016	572150	5538908	<0.005
RIV.NORD	S279809	CS	2016	572159	5538926	0.016
RIV.NORD	S279839	CS	2016	572040	5538933	0.505
RIV.NORD	S279840	CS	2016	572047	5538931	1.16
RIV.NORD	S279841	CS	2016	572047	5538933	0.008
RIV.NORD	S279842	CS	2016	572048	5538930	0.076
RIV.NORD	S279843	CS	2016	572047	5538926	3.92
RIV.NORD	S279844	CS	2016	572050	5538926	0.523
RIV.NORD	S279845	CS	2016	572046	5538926	1.255
RIV.NORD	S279846	CS	2016	572049	5538928	0.064
RIV.NORD	S279847	CS	2016	572052	5538928	0.027
RIV.NORD	S279848	CS	2016	572052	5538929	0.008
RIV.NORD	S279849	CS	2016	572051	5538931	0.011
RIV.NORD	S279850	CS	2016	572051	5538936	0.19
RIV.NORD	S280415	BLD	2016	572149	5538926	0.067
RIV.NORD	S280416	BLD	2016	572146	5538928	0.014
RIV.NORD	S280417	BLD	2016	572148	5538928	0.015
RIV.NORD	S280418	BLD	2016	572147	5538927	<0.005

GS: grab samples, CS: composite samples, BLD: glacial boulders

TABLE 15 : 2015-2016 SAMPLING COMPILATION, RIVIÈRE NORD STRIPPING AREA.

Monexco No.3, Karine Nord

The sampling was randomly distributed were north-south to north-east quartz-tourmaline veins of varied width and length are observed. Total of 63 bedrock samples were taken to cover an area making approximately 30 m X 50 m.

Two continuous porphyry dykes can be observed at the north and south sides of the Monexco No.3 stripping. Partly illustrated on map, the main quartz vein system crosses the outcrop following a north-east (N064 degrees) orientation. The mineralized structure is composed of multiple decametric quartz-tourmaline veins inside a strongly carbonatized mafic host rock. The combined veins and alteration apparent thickness stays inside 1 to 2 m with a strong curved dip. It can be followed for about 35 m of strike length until it disappeared under the overburden. The area surrounding the main vein system is marked by a conformable tourmaline replacement to the main foliation. This feature is more prominent at this location when compared to surrounding sampling sites.

Extension of the dykes system with associated high strain zone can be observed on the eastward Karine Nord stripping with a slight rotation of main structures, going from east-west to N120 degrees south-west orientation while maintaining a strong 80 degrees south dip. This inflection corresponds also to an abrupt thickening of the high strain zone.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 350m E to 572 500m E, 5 538 825m N to 5 538 925m N.

The sampling was concentrated on north-east fractures systems which host most parallel quartz-tourmaline veins. The targeted area has a lateral extension of about 75 m with a north-south influence of 25 m. From a total of 63 samples, 17 results are between 1.1 g/t and 18.8 g/t gold and 16 samples covers the 0.1 to 1.0 g/t gold range. The main samples grouping is located at the north-east corner of the sampling zone.

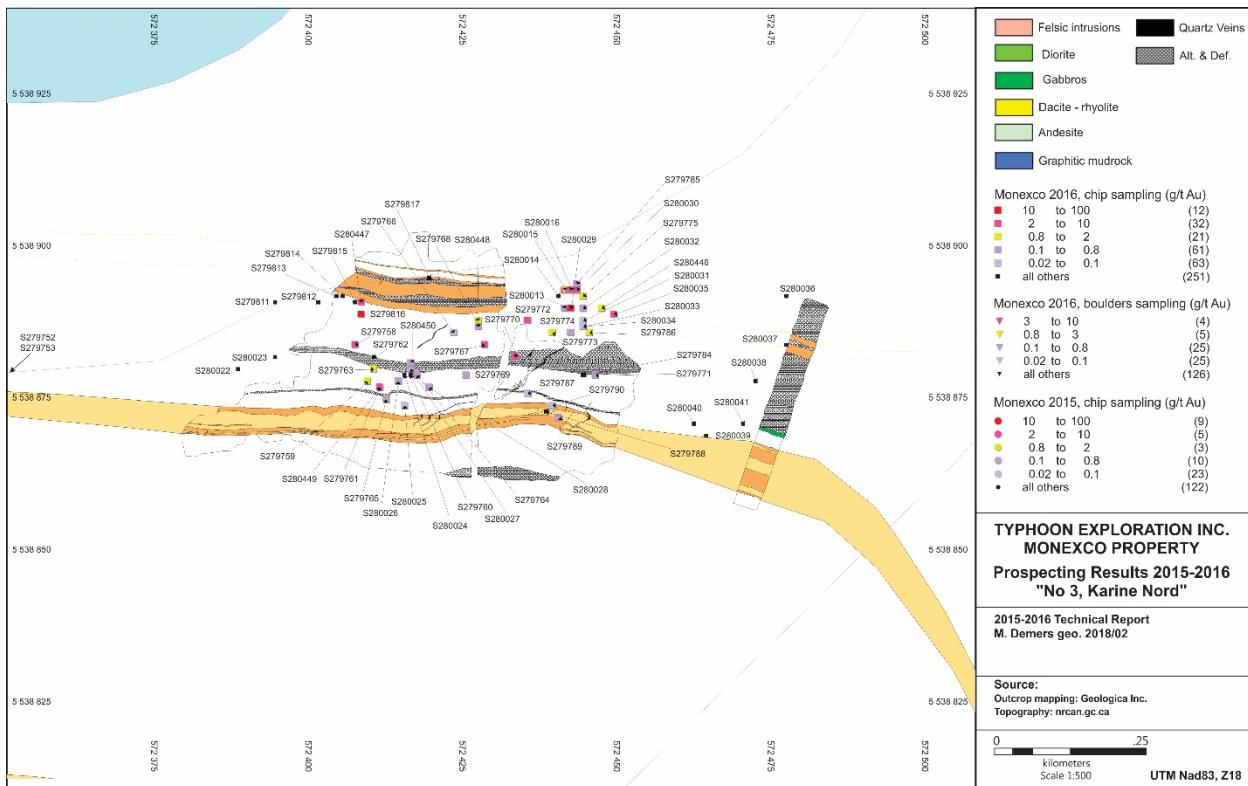


FIGURE 34 : MONEXCO NO.3 STRIPPING AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

STATION	SITE	UZ18-EAST	UZ18-NORD	SIGEOM CODE	DESCRIPTION	STRUCTURE	TYPE
030616-10	Monexco No.3	572447	5538870	TO	Tourmalinization layer associated with quartz-dolomite veins. Constant east-west orientation.	064/80	VN
030616-11	Monexco No.3	572398	5538896	CT	Western limit of alteration zone, southbounded by intermediate volcanics.	-	-
030616-12	Monexco No.3	572430	5538879	VN-FR	Sub-parallel veins system inside a metric envelope.	060/62	VN
						045/85	FR
030616-13	Monexco No.3	572438	5538844	CT	Alteration contact.	-	-

TABLE 16 : 2016 GEOLOGICAL STATIONS, MONEXCO NO.3 STRIPPING AREA.

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
NO.3	S279752	CS	2016	572345	5338881	<0.005
NO.3	S279753	CS	2016	572345	5338881	0.007
NO.3	S279758	CS	2016	572409	5538885	2.59
NO.3	S279759	CS	2016	572411	5538879	0.846
NO.3	S279760	CS	2016	572418	5538880	<0.005
NO.3	S279761	CS	2016	572413	5538878	0.007
NO.3	S279762	CS	2016	572412	5538883	<0.005
NO.3	S279763	CS	2016	572412	5538881	1.14
NO.3	S279764	CS	2016	572419	5538880	0.117
NO.3	S279765	CS	2016	572414	5538876	0.582
NO.3	S279766	CS	2016	572425	5538887	0.068
NO.3	S279767	CS	2016	572430	5538885	2.69
NO.3	S279768	CS	2016	572429	5538888	0.151
NO.3	S279769	CS	2016	572427	5538880	0.359
NO.3	S279770	CS	2016	572435	5538883	4.89
NO.3	S279771	CS	2016	572448	5538880	0.68
NO.3	S279772	CS	2016	572437	5538889	3.17
NO.3	S279773	CS	2016	572441	5538887	1.955
NO.3	S279774	CS	2016	572444	5538887	0.71
NO.3	S279775	CS	2016	572446	5538893	0.953
NO.3	S279784	CS	2016	572446	5538880	0.009
NO.3	S279785	CS	2016	572445	5538895	0.188
NO.3	S279786	CS	2016	572447	5538887	1.07
NO.3	S279787	CS	2016	572437	5538877	0.056
NO.3	S279788	CS	2016	572440	5538874	0.018
NO.3	S279789	CS	2016	572442	5538873	0.434
NO.3	S279790	CS	2016	572441	5538875	0.092
NO.3	S279811	CS	2016	572396	5538892	0.007
NO.3	S279812	CS	2016	572403	5538892	0.007
NO.3	S279813	CS	2016	572406	5538893	<0.005
NO.3	S279814	CS	2016	572407	5538893	0.006

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
NO.3	S279815	CS	2016	572409	5538892	<0.005
NO.3	S279816	CS	2016	572410	5538890	18.8
NO.3	S279817	CS	2016	572421	5538896	0.011
NO.3	S280013	CS	2016	572443	5538891	0.282
NO.3	S280014	CS	2016	572442	5538893	0.006
NO.3	S280015	CS	2016	572443	5538894	2.25
NO.3	S280016	CS	2016	572444	5538894	3.9
NO.3	S280022	CS	2016	572390	5538881	<0.005
NO.3	S280023	CS	2016	572396	5538883	0.008
NO.3	S280024	CS	2016	572417	5538880	<0.005
NO.3	S280025	CS	2016	572417	5538875	0.021
NO.3	S280026	CS	2016	572416	5538879	0.189
NO.3	S280027	CS	2016	572418	5538881	0.727
NO.3	S280028	CS	2016	572421	5538878	0.196
NO.3	S280029	CS	2016	572444	5538891	11.6
NO.3	S280030	CS	2016	572445	5538894	4.06
NO.3	S280031	CS	2016	572446	5538889	0.08
NO.3	S280032	CS	2016	572446	5538891	0.269
NO.3	S280033	CS	2016	572446	5538888	0.006
NO.3	S280034	CS	2016	572446	5538888	0.03
NO.3	S280035	CS	2016	572451	5538890	2.94
NO.3	S280036	CS	2016	572479	5538893	<0.005
NO.3	S280037	CS	2016	572479	5538885	<0.005
NO.3	S280038	CS	2016	572474	5538879	0.015
NO.3	S280039	CS	2016	572466	5538870	<0.005
NO.3	S280040	CS	2016	572464	5538872	<0.005
NO.3	S280041	CS	2016	572472	5538872	<0.005
NO.3	S280446	CS	2016	572449	5538891	1.375
NO.3	S280447	CS	2016	572410	5538892	2.27
NO.3	S280448	CS	2016	572429	5538889	1.2
NO.3	S280449	CS	2016	572413	5538878	7.54
NO.3	S280450	CS	2016	572418	5538882	0.579

GS: grab samples, CS: composite samples, BLD: glacial boulders

TABLE 17 : 2015-2016 SAMPLING COMPILATION FROM MONEXCO NO.3 STRIPPING AREA.

VG

The VG stripping sampling activity was concentrated mostly on the main work, but satellite outcrops were also covered for sampling and geology. Total of 85 samples (84 bedrock samples and 1 boulder sample) were collected in this environment where high grade values >10g/t were obtained by previous field programs.

The geology of the main bedrock surface shows two foliated metric quartzo feldspathic porphyry dykes spaced out by about 20 m. These intrusions have a varying south dip between 65 and 80 degrees, following east-west to south-east orientation (N120 degrees) when correlated from one outcrop to the other.

The local volcanic environment is dominated by andesite flows with related bedded tuffs. A massive dioritic dyke is observed conformable to volcanic contacts. Iron carbonate alteration intensity varies continuously inside a few meters, being correlated with the level of ductile deformation and the distance from porphyry dykes.

Fractures and minor faults are ubiquitous, forming a main 3 to 7 m wide north-east trending structural zone that can be followed for about 30 m on the main outcrop. Dominant conjugated fractures set follow N045 and N330 degrees orientation with respectively south-east and south-west dips. The southern quartzo feldspathic porphyry dyke shows a distinct right hand dragging

in relation with the fractures zone. Quartz veins are short for the greater part, with metric length or less. Varied orientations measured correspond to conjugated patterns centered on north to north-east and south-west orientations. Dips measurements are grouped between 55 and 65 degrees for both sets.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 180m E to 572 325m E, 5 538 075m N to 5 538 875m N.

Sampling returned 29 samples with results above 1.0 g/t gold with 15 samples with results between 12.4 and 81.8 g/t gold. 20 additional samples showed results between 0.1 and 0.9 g/t gold. Best results are systematically located inside 3 m from a continuous east-west south dipping foliated pink quartzo feldspathic porphyry dyke.

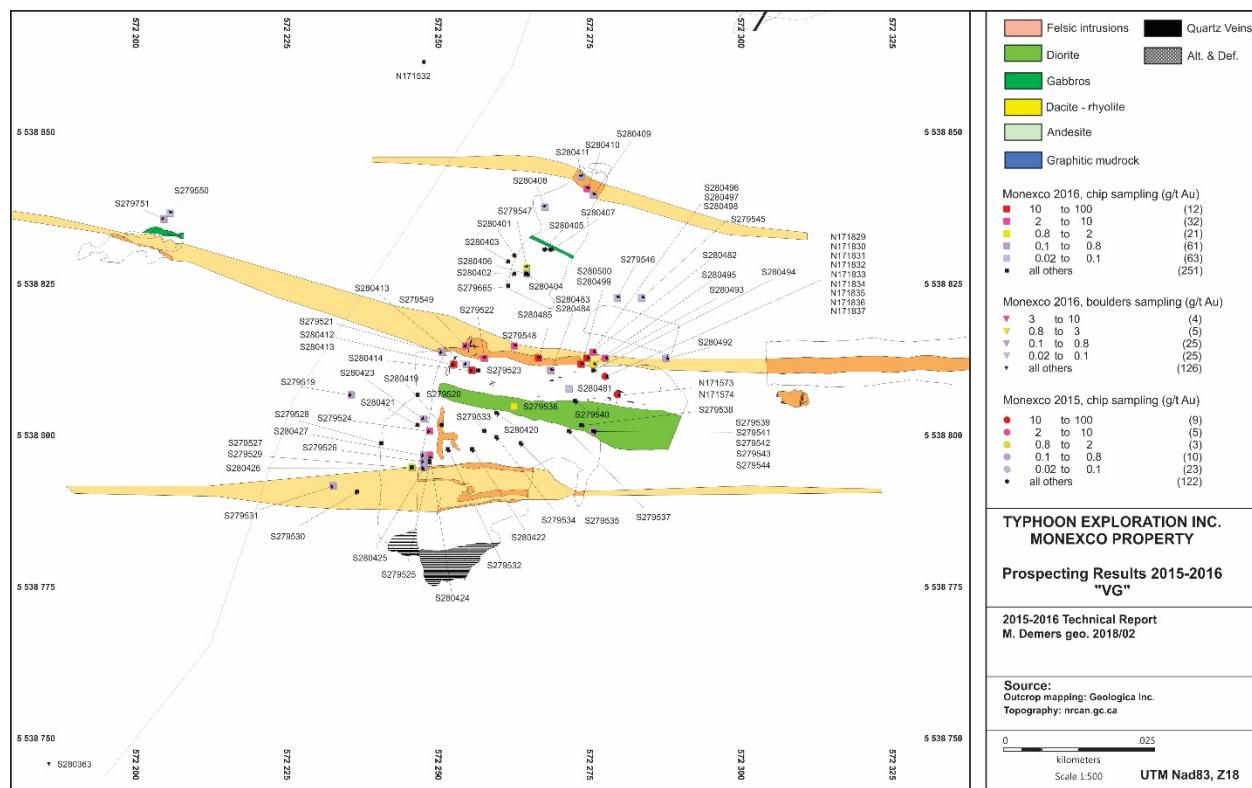


FIGURE 35 : VG STRIPPING AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

Station	Site	UZ18-EAST	UZ18-NORD	Sigeom code	Description	Structure	Type
140616-7	VG	574516	5541125	AMd3	Quartzofeldspathic porphyry dyke termination in a shistosed andesite.	110/60	S1
						045/75	FR
150616-1	VG	572897	5539817	I3	Fractures swarm over 10 metres, 3 metres strike slip offset observed with crochons.	030/85	FR
						065/85	FR
						150/65	VN
150616-2	VG	572634	5539822	V3d3	Laminated felsic tuff in andesitic flows	057/56	VN
						260/54	FR
150616-3	VG	570589	5539030	V3	East-west high shear zone limited by a porphyry dyke (sheared). Injected by sigmoidal quartz veins.	110/65	S0
						040/50	VN
150616-4	VG	570806	5538943	V3am	North-east fractured zone in an east-west ductile shear.	-	-
170616-10	VG	570517	5538297	S	Strong carbonate alteration in a ductile high strain zone defined by the intersection of north-east and east-west fractures.	035/85	VN
						280/64	VN
170616-11	VG	570667	5538389	V3V2d3	Moderately deformed mafic host rock.	-	-
170616-13	VG	571183	5538241	d3	Weakly hematized foliated quartzo- feldspathic porphyry dyke in a shistosed host rock.	095/80	S0
						338/78	FR
						215/85	VN

TABLE 18 : 2016 GEOLOGICAL STATIONS FROM THE VG STRIPPING AREA.

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
VG	N171532	GS	2015	572249	5538863	0.009
VG	N171573	GS	2015	572281	5538808	12.5
VG	N171574	GS	2015	572281	5538808	12.4
VG	N171829	GS	2015	572279	5538811	1.205
VG	N171830	GS	2015	572279	5538811	2.64
VG	N171831	GS	2015	572279	5538811	0.116
VG	N171832	GS	2015	572279	5538811	0.223
VG	N171833	GS	2015	572279	5538811	40.3
VG	N171834	GS	2015	572279	5538811	16.15
VG	N171835	GS	2015	572279	5538811	35.9
VG	N171836	GS	2015	572279	5538811	51
VG	N171837	GS	2015	572279	5538811	37.9
VG	S279519	CS	2016	572237	5538808	0.123
VG	S279520	CS	2016	572248	5538808	<0.005
VG	S279521	CS	2016	572252	5538815	0.569
VG	S279522	CS	2016	572259	5538814	9.77
VG	S279523	CS	2016	572258	5538812	0.009
VG	S279524	CS	2016	572250	5538802	9.46
VG	S279525	CS	2016	572250	5538797	0.019
VG	S279526	CS	2016	572249	5538797	0.287
VG	S279527	CS	2016	572247	5538796	0.827
VG	S279528	CS	2016	572242	5538800	0.014
VG	S279529	CS	2016	572247	5538796	0.009
VG	S279530	CS	2016	572238	5538792	<0.005
VG	S279531	CS	2016	572234	5538793	0.609
VG	S279532	CS	2016	572253	5538799	<0.005
VG	S279533	CS	2016	572259	5538802	0.008
VG	S279534	CS	2016	572261	5538801	0.019
VG	S279535	CS	2016	572265	5538800	0.007
VG	S279536	CS	2016	572264	5538806	0.825
VG	S279537	CS	2016	572273	5538802	0.015
VG	S279538	CS	2016	572275	5538803	0.018
VG	S279539	CS	2016	572277	5538802	<0.005
VG	S279540	CS	2016	572274	5538807	0.018
VG	S279541	CS	2016	572277	5538802	0.021
VG	S279542	CS	2016	572277	5538802	1.925
VG	S279543	CS	2016	572277	5538802	0.199
VG	S279544	CS	2016	572277	5538802	0.016
VG	S279545	CS	2016	572285	5538824	0.077
VG	S279546	CS	2016	572281	5538824	0.02
VG	S279547	CS	2016	572266	5538829	0.898
VG	S279548	CS	2016	572264	5538816	6.49

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
VG	S279549	CS	2016	572256	5538816	5.05
VG	S279550	CS	2016	572207	5538838	0.023
VG	S279665	CS	2016	572263	5538826	0.006
VG	S279751	CS	2016	572206	5538837	0.13
VG	S280363	BLD	2016	572187	5538747	<0.005
VG	S280401	CS	2016	572264	5538831	0.014
VG	S280402	CS	2016	572264	5538828	0.009
VG	S280403	CS	2016	572263	5538830	<0.005
VG	S280404	CS	2016	572266	5538828	0.765
VG	S280405	CS	2016	572269	5538832	<0.005
VG	S280406	CS	2016	572266	5538828	<0.005
VG	S280407	CS	2016	572270	5538832	0.006
VG	S280408	CS	2016	572269	5538839	0.026
VG	S280409	CS	2016	572277	5538841	0.118
VG	S280410	CS	2016	572276	5538842	2.21
VG	S280411	CS	2016	572275	5538844	0.11
VG	S280412	CS	2016	572254	5538813	17.45
VG	S280413	CS	2016	572256	5538813	0.02
VG	S280414	CS	2016	572257	5538812	18.6
VG	S280419	CS	2016	572252	5538803	0.013
VG	S280420	CS	2016	572261	5538805	<0.005
VG	S280421	CS	2016	572248	5538803	<0.005
VG	S280422	CS	2016	572257	5538799	0.007
VG	S280423	CS	2016	572249	5538804	0.219
VG	S280424	CS	2016	572250	5538798	2.71
VG	S280425	CS	2016	572249	5538796	0.37
VG	S280426	CS	2016	572249	5538796	0.112
VG	S280427	CS	2016	572249	5538798	0.206
VG	S280481	CS	2016	572273	5538809	0.036
VG	S280482	CS	2016	572277	5538815	18.5
VG	S280483	CS	2016	572277	5538815	3.73
VG	S280484	CS	2016	572270	5538812	81.8
VG	S280485	CS	2016	572270	5538812	0.36
VG	S280485	CS	2016	572268	5538814	29.1
VG	S280492	CS	2016	572289	5538814	0.258
VG	S280493	CS	2016	572279	5538814	2.92
VG	S280494	CS	2016	572277	5538812	0.016
VG	S280495	CS	2016	572277	5538813	1.68
VG	S280496	CS	2016	572276	5538814	4.54
VG	S280497	CS	2016	572276	5538814	6.53
VG	S280498	CS	2016	572276	5538814	19.75
VG	S280499	CS	2016	572275	5538813	54.7
VG	S280500	CS	2016	572275	5538813	14.75

GS: grab samples, CS: composite samples, BLD: glacial boulders

TABLE 19 : 2015-2016 SAMPLING COMPILATION FROM VG STRIPPING AREA.

Moly1, Moly2

Exploration works done on the Moly 1 and Moly trench 2 confirmed a northern gold trend identified by quartzo feldspathic porphyry dykes and strong iron carbonate alteration.

Sampling from previous exploration phases had already covered potential gold mineralization indicators observed on stripped bedrock. The 2016 prospecting work found mineralized boulders down ice and between actual stripping. A total of 20 bedrock samples and 35 boulders samples were collected inside an area extension along strike over 275 m with a north-south influence of 200 m.

A stacked succession of quartzo feldspathic porphyry dykes runs on the Moly 1 outcrop following an east-west trend. Lamprophyre dyke segments are closely associated with the quartzo feldspathic porphyry phase, cross cutting the main ductile fabric. This environment is characterized by a strong east-west ductile fabric affected by north-west and north-east quartz

veining patterns. 150 m eastward, the Moly-2 stripping shows a 20 m thick porphyry dyke section split in two branches. Unlike Moly-1, the Moly 2 stripping is characterized by a strong iron carbonate alteration affecting both dykes and volcanic host rocks. A dense regular fractures pattern with minor quartz veining cut the dyke preferentially.

Mineralized boulders field was found immediately east-south-east from Moly-1 trench. 0.4 to 1.5 m angular boulders are characterized by strong tectonic layering made of iron carbonate and quartz-carbonate veins with minor chlorite and finely disseminated pyrite.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 500m E to 572 800m E, 5 539 000m N to 5 539 225m N.

The sampling coverage returned three results of 1.0, 3.15 and 8.25 g/t gold coming from a 2 m wide angular boulder located around 50 m east-south-east from Moly trench. 16 additional samples gave 10 results inside a range of 0.1 to 0.8 g/t gold inside an area making about 50 m.

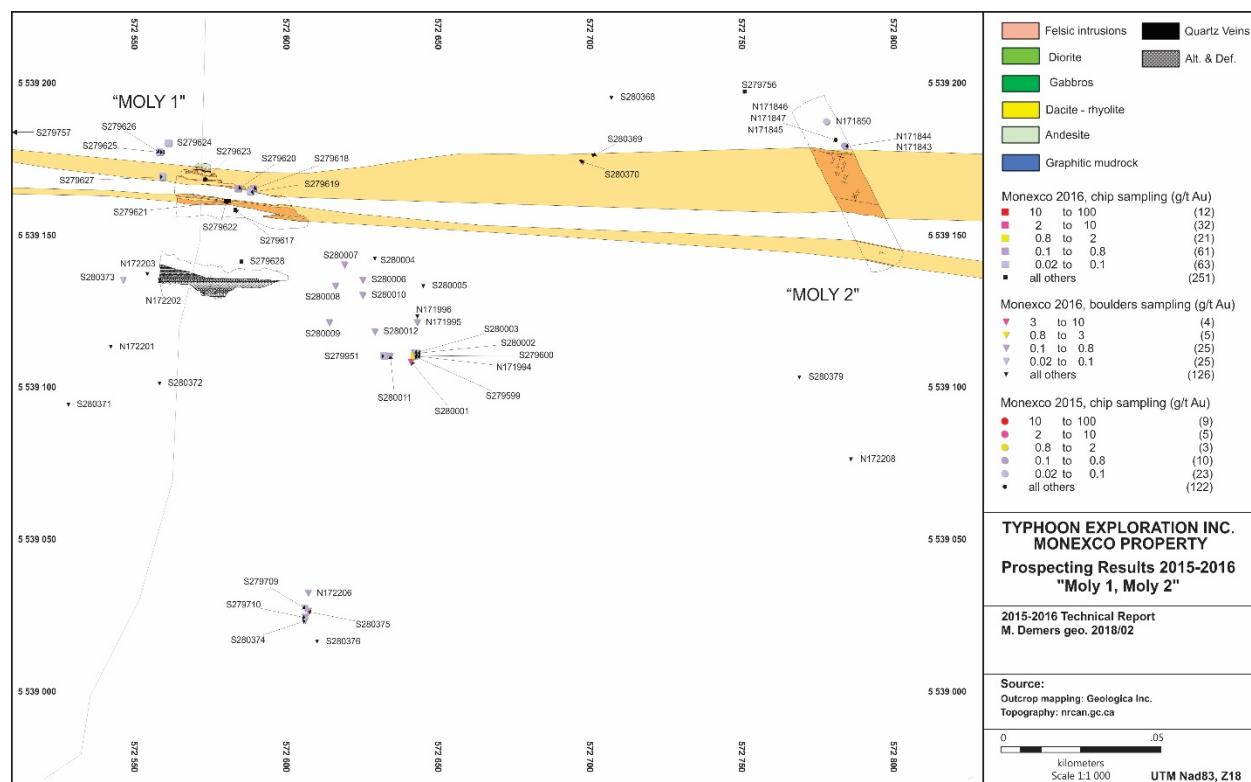


FIGURE 36 : MOLY 1 AND MOLY 2 STRIPPING AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

Technical Report on the Monexco Property, McCorkill Township, Chibougamau, Québec

STATION	SITE	UZ18-EAST	UZ18-NORD	SIGEOM CODE	DESCRIPTION	STRUCTURE	TYPE
030616-4	Moly	572773	5539201	V3-I1	Quartzo-feldspathic porphyry dyke in a strongly carbonatized and shistosed basalt.	80/84	CS
						320/80	FR
						340/64	VN
030616-5	Moly	572786	5539183	CT	Southern limit of iron carbonate alteration zone with minor porphyry and lamprophyres dykes.	345/86	VN
						86/72	VN
030616-6	Moly	572793	5539167	V3-R1	Layered quartz vein with disseminated pyrite. East-west orientation.	-	-
030616-8	Moly	572791	5539479	I3	Gabbro-felsic volcanic contact.	-	-
140616-8	Moly	572583	5539164	I1-LAM	Quartzo-feldspathic porphyry and lamprophyre dykes inside a carbonatized enveloppe.	-	-
140616-9	Moly	572564	5539182	I1	Metric foliated dykes, strongly fractured and quartz injected.	-	-
150616-2	Moly	572634	5539822	V3d3	Amphibolitized basalt, strongly deformed with associated porphyry dykes.	-	-

TABLE 20 : 2016 GEOLOGICAL STATIONS FROM MOLY 1 AND MOLY 2 STRIPPING AREA.

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
MOLY	N171843	GS	2015	572787	5539182	0.026
MOLY	N171844	GS	2015	572787	5539182	0.119
MOLY	N171845	GS	2015	572784	5539184	0.008
MOLY	N171846	GS	2015	572784	5539184	<0.005
MOLY	N171847	GS	2015	572784	5539184	0.016
MOLY	N171850	GS	2015	572781	5539190	0.036
MOLY	N171994	BLD	2016	572646	5539113	0.744
MOLY	N171995	BLD	2016	572646	5539124	0.762
MOLY	N171996	BLD	2016	572646	5539126	0.012
MOLY	N172201	BLD	2016	572545	5539116	<0.005
MOLY	N172202	BLD	2016	572561	5539138	0.006
MOLY	N172203	BLD	2016	572557	5539140	<0.005
MOLY	N172206	BLD	2016	572610	5539035	0.163
MOLY	N172208	BLD	2016	572789	5539079	<0.005
MOLY	S279599	BLD	2016	572645	5539113	8.25
MOLY	S279600	BLD	2016	572645	5539113	1.03
MOLY	S279617	CS	2016	572586	5539161	0.015
MOLY	S279618	CS	2016	572592	5539168	0.234
MOLY	S279619	CS	2016	572591	5539167	0.024
MOLY	S279620	CS	2016	572587	5539168	0.121
MOLY	S279621	CS	2016	572584	5539164	0.009
MOLY	S279622	CS	2016	572583	5539164	0.009
MOLY	S279623	CS	2016	572576	5539171	0.008
MOLY	S279624	CS	2016	572564	5539183	0.073
MOLY	S279625	CS	2016	572562	5539180	0.012
MOLY	S279626	CS	2016	572561	5539180	0.032
MOLY	S279627	CS	2016	572562	5539172	0.037

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
MOLY	S279628	CS	2016	572588	5539144	0.016
MOLY	S279709	BLD	2016	572609	5539030	0.093
MOLY	S279710	BLD	2016	572609	5539027	0.416
MOLY	S279756	CS	2016	572754	5539200	0.006
MOLY	S279757	BLD	2016	572322	5539143	<0.005
MOLY	S279951	CS	2016	572635	5539113	0.072
MOLY	S280001	BLD	2016	572644	5539111	3.15
MOLY	S280002	BLD	2016	572646	5539114	0.052
MOLY	S280003	BLD	2016	572645	5539114	0.638
MOLY	S280004	BLD	2016	572632	5539145	0.009
MOLY	S280005	BLD	2016	572648	5539136	0.011
MOLY	S280006	BLD	2016	572628	5539138	0.684
MOLY	S280007	BLD	2016	572622	5539143	0.184
MOLY	S280008	BLD	2016	572619	5539136	0.134
MOLY	S280009	BLD	2016	572617	5539124	0.275
MOLY	S280010	BLD	2016	572628	5539133	0.45
MOLY	S280011	BLD	2016	572637	5539113	0.319
MOLY	S280012	BLD	2016	572632	5539121	0.18
MOLY	S280368	BLD	2016	572710	5539198	0.007
MOLY	S280369	BLD	2016	572704	5539179	<0.005
MOLY	S280370	BLD	2016	572700	5539177	<0.005
MOLY	S280371	BLD	2016	572531	5539097	<0.005
MOLY	S280372	BLD	2016	572561	5539104	0.013
MOLY	S280373	BLD	2016	572549	5539138	0.024
MOLY	S280374	BLD	2016	572609	5539026	0.05
MOLY	S280375	BLD	2016	572610	5539029	0.126
MOLY	S280376	BLD	2016	572613	5539019	<0.005
MOLY	S280379	BLD	2016	572772	5539106	0.016

GS: grab samples, CS: composite samples, BLD: glacial boulders

TABLE 21 : 2015-2016 SAMPLING COMPILATION FROM MOLY 1 AND MOLY 2 STRIPPING AREAS.

Monexco North-East Extensions

Prospecting efforts were also conducted outside the Monexco gold trend using the projection of the quartzo feldspathic porphyry dykes swarm as main guideline. Sampling sites possibilities decreased quickly after about 500 m from stripped areas with overburden increasing thickness observed on both sides of Rivière France valley. A few hundred meters north of Moly-2 stripping, sub-outcropping areas following an east-west segment of Rivière France were prospected in detail to locate the northern limit of the Rivière France deformation zone. This area is extending over 500 m along strike with a north-south influence of about 200 m. At first view, the lack of extensive iron carbonate alteration may explain the little attention received from previous works. In this environment, basalt flows are affected by fine grain amphibolitization. The main fabric orientation measured in this area is subject to quick and steep orientation variations going from north-west to east-west.

One of the main highlight of the 2016 program is the discovery of a gold bearing massive pyrite lens with an apparent thickness in the range of 0.25 to 0.5m. This unit is located on a volcanic contact stripped along a strike length of 2 m. The host rock could be a chloritized felsic volcanic. An un deformed quartzo feldspathic porphyry dyke cut by quartz veining was identified 40 m westward. The accurate litho-stratigraphic position of this new occurrence has not been defined yet.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 500m E to 575 000m E, 5 538 950m N to 5 539 840m N.

54 samples were obtained from small outcrops and 46 glacial boulders were sampled. A result of 3.5 g/t gold was obtained from the newly discovered massive pyrite layer. The gold showing is surrounded by anomalous bedrock with 7 samples returning values between 0.1 and 0.3 g/t gold.

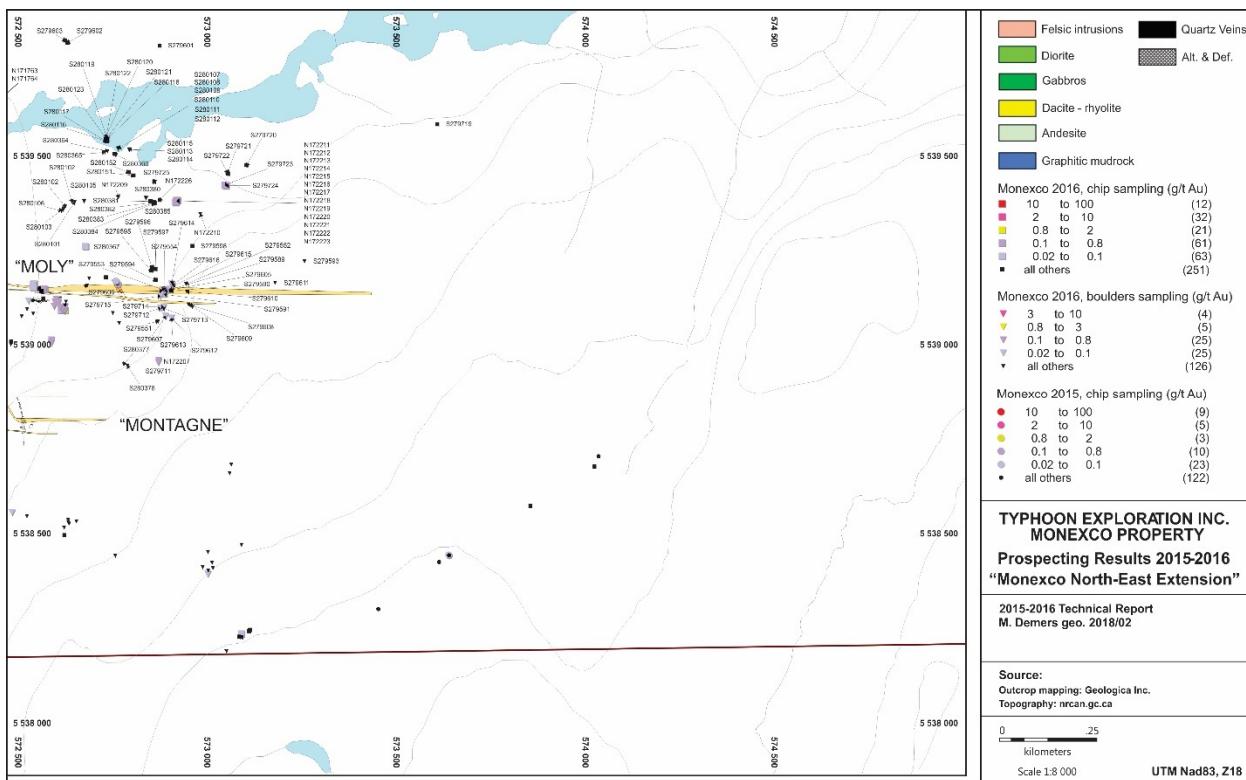


FIGURE 37 : MONEXCO NORTH-EAST AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

STATION	SITE	UZ18-EAST	UZ18-NORD	Siggeom Code	DESCRIPTION	STRUCTURE	TYPE
010616-6	Monexco N-E	573872	5538585	I3	Leucogabbro whitout apparent foliation.	-	-
030616-8	Monexco N-E	572791	5539479	I3	Gabbro in contact with felsic volcanics	-	-
030616-9	Monexco N-E	572910	5539353	I1QFP	Quartz-feldspathic porphyry dyke hosted in basalt without carbonatization	288/74	S1
						353/85	FR
150616-1	Monexco N-E	572897	5539817	I3	Gabbro whitout apparent foliation.	-	-
150616-2	Monexco N-E	572634	5539822	V3d3	Strongly deformed basalt with associated foliated porphyry dyke. Fine grain amphibolitization.	-	-
270916-1a	Monexco N-E	572942	5539404	V1-V2	Andesitic flow with massive pyrite conformable bands or veins.	-	-
270916-2	Monexco N-E	572882	5539398	FP-VN	Quartz veins cross cutting a feldspath porphyry dyke.	-	-
310516-1	Monexco N-E	573637	5538444	V3-CS	Strongly layered mafic flow affected by a right hand strike slip movement with quartz veining.	-	-

TABLE 22 : 2016 GEOLOGICAL STATIONS FROM MONEXCO NORTH-EAST AREA.

AREA	SAMPLE	TYPE	YEAR	U83Z18-EST	U83Z18-NORD	Au-ppm
NORTH-EAST	N171763	GS	2015	572192	5539566	<0.005
NORTH-EAST	N171764	GS	2015	572192	5539566	<0.005
NORTH-EAST	N172204	CS	2016	572503	5539030	<0.005
NORTH-EAST	N172205	BLD	2016	572502	5539023	<0.005
NORTH-EAST	N172207	BLD	2016	572894	5538981	0.112
NORTH-EAST	N172209	BLD	2016	572787	5539413	0.006
NORTH-EAST	N172210	BLD	2016	573004	5539368	<0.005
NORTH-EAST	N172211	CS	2016	572944	5539404	3.53
NORTH-EAST	N172212	CS	2016	572943	5539404	0.094
NORTH-EAST	N172213	CS	2016	572943	5539404	0.023
NORTH-EAST	N172214	CS	2016	572941	5539404	0.012
NORTH-EAST	N172215	CS	2016	572942	5539403	0.041
NORTH-EAST	N172216	CS	2016	572939	5539404	<0.005
NORTH-EAST	N172217	CS	2016	572941	5539401	<0.005
NORTH-EAST	N172218	CS	2016	572942	5539401	0.011
NORTH-EAST	N172219	CS	2016	572941	5539407	<0.005
NORTH-EAST	N172220	CS	2016	572938	5539407	<0.005
NORTH-EAST	N172221	CS	2016	572941	5539402	0.148
NORTH-EAST	N172222	CS	2016	572940	5539401	<0.005
NORTH-EAST	N172223	CS	2016	572939	5539398	0.15
NORTH-EAST	N172226	CS	2016	572896	5539405	<0.005
NORTH-EAST	S279551	BLD	2016	572892	5539084	<0.005
NORTH-EAST	S279552	BLD	2016	572966	5539183	0.006
NORTH-EAST	S279552	BLD	2016	572966	5539183	0.006
NORTH-EAST	S279553	BLD	2016	572908	5539167	0.008
NORTH-EAST	S279554	BLD	2016	572908	5539167	0.015
NORTH-EAST	S279589	CS	2016	572923	5539168	0.074
NORTH-EAST	S279590	CS	2016	572926	5539165	0.009
NORTH-EAST	S279591	CS	2016	572908	5539156	0.072
NORTH-EAST	S279593	BLD	2016	573280	5539243	<0.005
NORTH-EAST	S279594	CS	2016	572886	5539193	0.013
NORTH-EAST	S279595	CS	2016	572874	5539218	0.008
NORTH-EAST	S279596	CS	2016	572876	5539226	0.008
NORTH-EAST	S279597	CS	2016	572885	5539222	0.007
NORTH-EAST	S279598	CS	2016	572983	5539283	<0.005
NORTH-EAST	S279601	CS	2016	572896	5539814	<0.005
NORTH-EAST	S279602	CS	2016	572652	5539822	<0.005
NORTH-EAST	S279603	CS	2016	572646	5539828	<0.005
NORTH-EAST	S279605	CS	2016	572909	5539165	0.076
NORTH-EAST	S279606	BLD	2016	572903	5539165	0.082
NORTH-EAST	S279607	BLD	2016	572912	5539098	0.037
NORTH-EAST	S279608	BLD	2016	572973	5539129	<0.005
NORTH-EAST	S279609	BLD	2016	572980	5539126	<0.005
NORTH-EAST	S279610	BLD	2016	572968	5539163	0.011
NORTH-EAST	S279611	BLD	2016	573202	5539186	<0.005
NORTH-EAST	S279612	BLD	2016	572928	5539092	<0.005
NORTH-EAST	S279613	BLD	2016	572927	5539093	0.025
NORTH-EAST	S279614	BLD	2016	572928	5539184	0.075
NORTH-EAST	S279615	BLD	2016	572930	5539177	0.094
NORTH-EAST	S279616	BLD	2016	572929	5539180	0.137

AREA	SAMPLE	TYPE	YEAR	U83Z18-EST	U83Z18-NORD	Au-ppm
NORTH-EAST	S279711	BLD	2016	572893	5538975	0.187
NORTH-EAST	S279712	BLD	2016	572899	5539119	0.03
NORTH-EAST	S279713	BLD	2016	572904	5539120	0.038
NORTH-EAST	S279714	BLD	2016	572907	5539122	0.067
NORTH-EAST	S279715	BLD	2016	572898	5539151	0.034
NORTH-EAST	S279719	CS	2016	573631	5539606	0.007
NORTH-EAST	S279720	CS	2016	573126	5539497	<0.005
NORTH-EAST	S279721	CS	2016	573077	5539474	<0.005
NORTH-EAST	S279722	CS	2016	573076	5539478	0.009
NORTH-EAST	S279723	CS	2016	573069	5539444	0.305
NORTH-EAST	S279724	CS	2016	573072	5539442	0.133
NORTH-EAST	S279725	CS	2016	572882	5539453	<0.005
NORTH-EAST	S280101	BLD	2016	572671	5539400	<0.005
NORTH-EAST	S280102	BLD	2016	572664	5539401	<0.005
NORTH-EAST	S280103	BLD	2016	572642	5539382	<0.005
NORTH-EAST	S280104	BLD	2016	572646	5539388	<0.005
NORTH-EAST	S280105	BLD	2016	572696	5539402	<0.005
NORTH-EAST	S280106	BLD	2016	572636	5539377	<0.005
NORTH-EAST	S280107	BLD	2016	572786	5539541	<0.005
NORTH-EAST	S280108	BLD	2016	572787	5539542	<0.005
NORTH-EAST	S280109	BLD	2016	572787	5539543	<0.005
NORTH-EAST	S280110	BLD	2016	572786	5539547	<0.005
NORTH-EAST	S280111	BLD	2016	572783	5539542	<0.005
NORTH-EAST	S280112	BLD	2016	572785	5539541	<0.005
NORTH-EAST	S280113	BLD	2016	572816	5539539	0.006
NORTH-EAST	S280114	BLD	2016	572815	5539540	<0.005
NORTH-EAST	S280115	BLD	2016	572816	5539541	<0.005
NORTH-EAST	S280116	CS	2016	572754	5539562	<0.005
NORTH-EAST	S280117	CS	2016	572756	5539560	<0.005
NORTH-EAST	S280118	CS	2016	572756	5539566	<0.005
NORTH-EAST	S280119	CS	2016	572759	5539564	<0.005
NORTH-EAST	S280120	CS	2016	572753	5539571	0.019
NORTH-EAST	S280121	CS	2016	572755	5539569	0.07
NORTH-EAST	S280122	CS	2016	572754	5539567	<0.005
NORTH-EAST	S280123	CS	2016	572757	5539565	<0.005
NORTH-EAST	S280151	CS	2016	572827	5539470	<0.005
NORTH-EAST	S280152	CS	2016	572814	5539479	<0.005
NORTH-EAST	S280356	CS	2016	572644	5538516	<0.005
NORTH-EAST	S280364	BLD	2016	572758	5539535	<0.005
NORTH-EAST	S280365	BLD	2016	572751	5539532	<0.005
NORTH-EAST	S280366	CS	2016	572777	5539527	<0.005
NORTH-EAST	S280367	CS	2016	572700	5539281	0.022
NORTH-EAST	S280377	BLD	2016	572801	5538967	<0.005
NORTH-EAST	S280378	BLD	2016	572811	5539106	0.016
NORTH-EAST	S280380	BLD	2016	572860	5539410	<0.005
NORTH-EAST	S280381	CS	2016	572873	5539402	<0.005
NORTH-EAST	S280382	CS	2016	572882	5539399	<0.005
NORTH-EAST	S280383	CS	2016	572881	5539397	<0.005
NORTH-EAST	S280384	CS	2016	572883	5539397	<0.005
NORTH-EAST	S280385	CS	2016	572880	5539399	<0.005

GS: grab samples, CS: composite samples, BLD: glacial boulders

TABLE 23 : 2015-2016 SAMPLING COMPILATION FROM MONEXCO NORTH-EAST AREA.

Monexco South-East Area

The sampling performed south of the Monexco gold trend was used to define the southern limit of the Rivière France deformation zone.

Prospecting works were concentrated where strongly fractured chloritized basalt flows with quartz veining were observed close to gabbro sills contacts. The gradual increase of the main east-west foliation intensity can be visually correlated with the density of north-east quartz filled fractures.

35 bedrock samples and 23 boulders samples were collected mostly along the project main access trail. The sampling north-south span covered about 500 m starting at the property southern limit.

Results are reported in the following polygon in the UTM NAD83 Z18 projection system: 572 370m E to 573 880m E, 5 538 200m N to 5 538 770m N.

Any gold value above 0.1 g/t gold was obtained, however two isolated values of 0.07 g/t and 0.09 g/t gold came from undocumented environments.

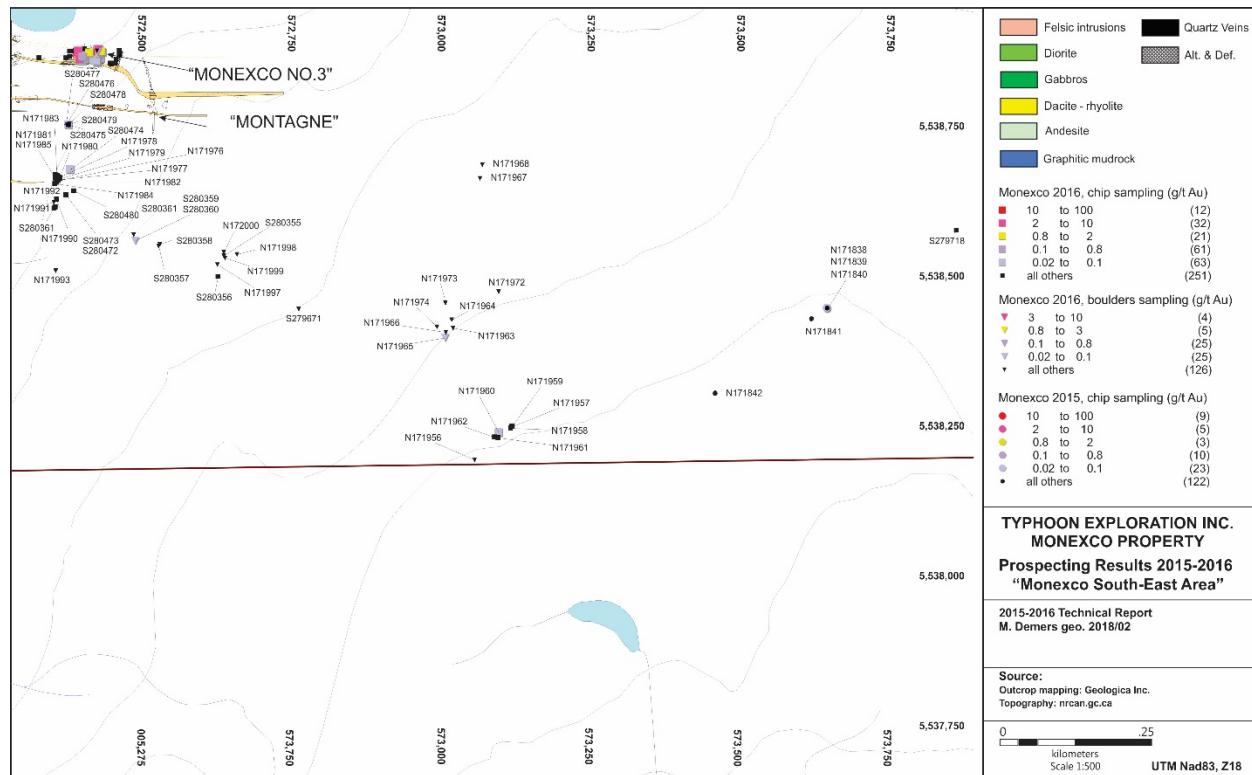


FIGURE 38 : MONEXCO SOUTH-EAST AREA WITH 2015-2016 SAMPLING AND GEOLOGICAL MAPPING.

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
SOUTH-EAST	N171838	GS	2015	573662	5538462	0.032
SOUTH-EAST	N171839	GS	2015	573662	5538463	0.058
SOUTH-EAST	N171840	GS	2015	573662	5538463	0.019
SOUTH-EAST	N171841	GS	2015	573636	5538445	0.019
SOUTH-EAST	N171842	GS	2015	573475	5538321	0.008
SOUTH-EAST	N171848	GS	2015	574058	5538724	0.005
SOUTH-EAST	N171956	BLD	2016	573073	5538210	0.005
SOUTH-EAST	N171957	CS	2016	573136	5538266	0.005
SOUTH-EAST	N171958	CS	2016	573133	5538263	0.005
SOUTH-EAST	N171959	CS	2016	573135	5538266	0.005
SOUTH-EAST	N171960	CS	2016	573113	5538255	0.027
SOUTH-EAST	N171961	CS	2016	573112	5538247	0.006
SOUTH-EAST	N171962	CS	2016	573106	5538248	0.005
SOUTH-EAST	N171963	BLD	2016	573037	5538430	0.005
SOUTH-EAST	N171964	BLD	2016	573035	5538444	0.006
SOUTH-EAST	N171965	BLD	2016	573024	5538414	0.035
SOUTH-EAST	N171966	BLD	2016	573025	5538423	0.005
SOUTH-EAST	N171967	BLD	2016	573082	5538680	0.005
SOUTH-EAST	N171968	BLD	2016	573086	5538703	0.005
SOUTH-EAST	N171972	BLD	2016	573113	5538491	0.005
SOUTH-EAST	N171973	BLD	2016	573024	5538472	0.005
SOUTH-EAST	N171974	BLD	2016	573010	5538432	0.005
SOUTH-EAST	N171976	CS	2016	572377	5538676	0.005
SOUTH-EAST	N171977	CS	2016	572376	5538677	0.016
SOUTH-EAST	N171978	CS	2016	572378	5538681	0.005
SOUTH-EAST	N171979	CS	2016	572380	5538679	0.01
SOUTH-EAST	N171980	CS	2016	572380	5538681	0.005
SOUTH-EAST	N171981	CS	2016	572372	5538686	0.013
SOUTH-EAST	N171982	CS	2016	572374	5538673	0.005

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
SOUTH-EAST	N171983	CS	2016	572375	5538685	0.005
SOUTH-EAST	N171984	CS	2016	572371	5538671	0.005
SOUTH-EAST	N171985	CS	2016	572372	5538680	0.005
SOUTH-EAST	N171990	CS	2016	572374	5538645	0.005
SOUTH-EAST	N171991	BLD	2016	572370	5538640	0.005
SOUTH-EAST	N171992	CS	2016	572372	5538632	0.005
SOUTH-EAST	N171993	BLD	2016	572373	5538526	0.005
SOUTH-EAST	N171997	BLD	2016	572643	5538536	0.005
SOUTH-EAST	N171998	BLD	2016	572676	5538553	0.005
SOUTH-EAST	N171999	BLD	2016	572656	5538547	0.005
SOUTH-EAST	N172000	BLD	2016	572654	5538557	0.005
SOUTH-EAST	S279671	BLD	2016	572779	5538462	0.005
SOUTH-EAST	S279718	CS	2016	573878	5538593	0.005
SOUTH-EAST	S280355	BLD	2016	572654	5538551	0.005
SOUTH-EAST	S280357	BLD	2016	572545	5538567	0.005
SOUTH-EAST	S280358	BLD	2016	572547	5538570	0.005
SOUTH-EAST	S280359	BLD	2016	572507	5538575	0.005
SOUTH-EAST	S280360	BLD	2016	572506	5538576	0.073
SOUTH-EAST	S280361	BLD	2016	572503	5538586	0.005
SOUTH-EAST	S280470	CS	2016	574047	5538697	0.005
SOUTH-EAST	S280472	CS	2016	572390	5538653	0.005
SOUTH-EAST	S280473	CS	2016	572390	5538652	0.005
SOUTH-EAST	S280474	CS	2016	572397	5538694	0.022
SOUTH-EAST	S280475	CS	2016	572394	5538769	0.088
SOUTH-EAST	S280476	CS	2016	572394	5538769	0.012
SOUTH-EAST	S280477	CS	2016	572394	5538769	0.023
SOUTH-EAST	S280478	CS	2016	572394	5538769	0.007
SOUTH-EAST	S280479	CS	2016	572394	5538769	0.009
SOUTH-EAST	S280480	CS	2016	572403	5538659	0.005

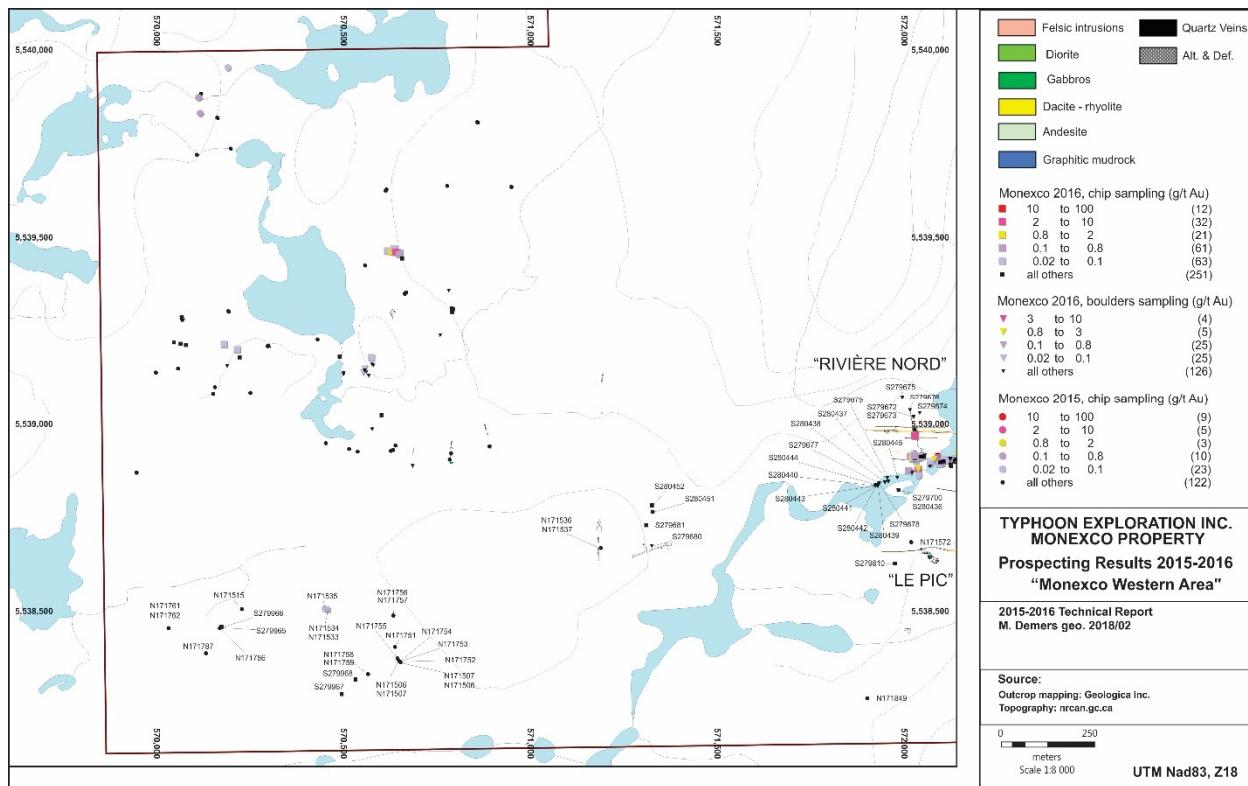
GS: grab samples, CS: composite samples, BLD: glacial boulders

TABLE 24 : 2015-2016 SAMPLING COMPILATION FROM MONEXCO SOUTH-EAST AREA.

West Property Area

The West Property Area corresponds to the most eastern block of the historical Soquem France project which was explored between 1988 and 1991. This sector was covered by extensive ground geophysics including VLF, and Max-Min surveys followed by stripping works. An isolated gold bearing drill interval of 7.3 g/t over 1 meters was obtained about 1.5km north-west from the Monexco Rivière Nord gold showing.

This prospecting area goes westward from the Rivière Nord stripping to the western property limit covering about 2.2 km. On the north-south axis, the entire property area is covered over 2.0 km. The corresponding polygon in the UTM NAD83 Z18 coordinates system is 569 900m E to 572 110m E and 5 538 000m N to 5 540 000m N. 123 bedrock samples, 27 boulders samples and 10 river bed boulders came from this area.


The previous Typhoon work was concentrated mostly along the property southern limit, following the Riviere France deformation zone position by using north-south narrow stripping for channel sampling. 2015-2016 works followed Soquem path and were offset to the north-west to confirm the gold potential previously highlighted.

In terms of gold mineralization indicators, a high strain zone environment was identified close to the 5 539 000m N position, which corresponds to the upper north position of the Monexco gold system, 2km eastward. A deformation zone contact can be traced about 400 m north of the southern property boundary. North of this position, a repetition of strongly foliated and chloritized environments was identified within the northern property limit.

Occurrences of strongly foliated basalts observed in that area show contrasted fabric orientation varying from east-west to north-west with opposite moderate to strong dips (60 to 85 degrees). This main foliation is locally punctuated by felsic dykes, quartz veins concentrations in sheared and carbonatized areas. The local till coarse fraction includes about 20% of quartz-feldspathic porphyry dykes boulders.

The main Soquem gold showing of this area is located at the 570 678m E, 5 539 471m N position. Mineralization is related to a 0.4 m thick quartz vein with 60 degrees dip to the south-west hosted in an iron carbonatized shear zone of the same orientation. Other veins of north-east and north-west orientation were identified close to the northern property limit.

Two samples originating from the Soquem showing returned 1.2 and 2.65 g/t gold. Apart a third sample giving 0.5 g/t, there is no gold enrichment surrounding these higher values. A second area of gold enrichment was identified in 2015 close to the property north-west corner with four samples giving gold values between 0.1 and 0.4 g/t inside a 50 meters area.

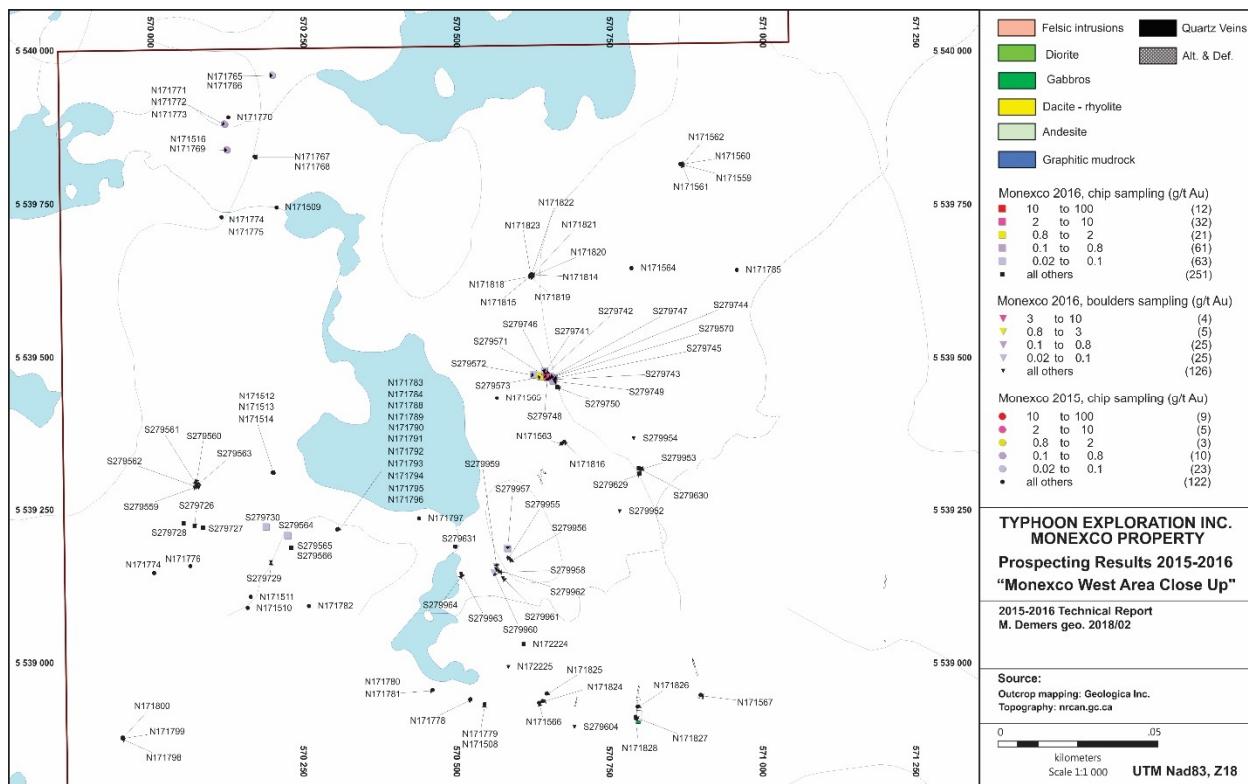


FIGURE 39 : 2015-2016 SAMPLING OF THE WESTERN AREA OF THE MONEXCO PROPERTY.

Technical Report on the Monexco Property, McCorkill Township, Chibougamau, Québec

STATION	SITE	UZ18-EAST	UZ18-NORD	Sigeom Code	DESCRIPTION	STRUCTURE	TYPE
010616-1	West Property	525239	5536228	V3-I3	Basalt flow breccia affected by a north-east fractures pattern.	65/62	FR
030616-14	West Property	570371	5532871	PY	Strong pyrite dissemination over 3 metres. Clear contact.	290/80	S0
130616-2	West Property	570087	5539239	V3-V2	Layered volcanics (mafic to intermediate sequence).	100/54	S0
130616-3	West Property	570043	5539186	d3	High strain zone with drag folding.	-	-
130616-4	West Property	570217	5539181	I1	Un deformed quartzo feldspathic porphyry (angular glacial block).	-	-
130616-5	West Property	570202	5539240	I1	East-west foliated quartzo-feldspathic dykes.	-	-
130616-6	West Property	570243	5539207	V1-PY	Pyrite stringer over 10 metres apparent width.	-	-
130616-7	West Property	570471	5538974	V3	Basalt, massive to foliated. Deformation zone northern limit.	-	-
130616-8	West Property	570684	5539376	V3	Foliated and sheared basalt with local disseminated pyrite.	-	-
130616-9	West Property	570632	5539649	V3-R1	Quartz vein in an east-west foliation.	-	-
140616-1	West Property	570678	5539471	V3I3I1	North-east shearing making the contact between massive basalt, flow breccia and felsic dykes.	122/75	S0
	West Property					30/64	CS
140616-2	West Property	570678	5539471	R1	0.4 metres quartz vein hosted in a high strain zone.	310/60	VN
	West Property					85/85	CS
140616-3	West Property	570641	5539485	CS	Iron carbonatized shear zone.	-	-
150616-3	West Property	570589	5539030	V3	Foliated basalt, unaltered.	115/85	S1
150616-4	West Property	570806	5538943	V3am	Amphibolitization.	-	-
150616-5	West Property	570913	5538963	V2tu	Tuff or volcanic derived sediments. Weak carbonatization in fractures.	290/85	S0
	West Property					290/85	S0
170616-1	West Property	570810	5539328	d3	High strain zone over 10 metres.	90/68	CS
170616-2	West Property	570815	5539315	V3-I3	Basalt or gabbro moderately deformed.	-	-
170616-3	West Property	570817	5539331	I1	QFP dyke, possibly altered.	-	-
170616-4	West Property	570509	5539204	CSCL3	Strong chloritization with quartz veining, sheared with boudinage.	110/60	S1
170616-5	West Property	569972	5538656	V3	Foliated massive coarse crystallized basalt.	122/60	S1
170616-6	West Property	570059	5538479	V3	Foliated basalt with quartz veining. Strong chloritization.	-	-
170616-7	West Property	570191	5538481	V3	Foliated basalt.	344/64	FR
170616-8	West Property	570631	5538401	V3	Foliated basalt, strongly chloritized.	-	-
170616-9	West Property	570556	5538338	I1	Weakly altered biotite bearing quartzo-feldspathic dyke.	-	-
170616-10	West Property	570517	5538297	S	Layered structure of sedimentary origin.	265/85	S0
170616-11	West Property	570667	5538389	V3V2d3	Strongly shistosed volcanic host rock with oblique quartz veining.	-	-
170616-12	West Property	571122	5538459	d3	East-west, sub vertical high strain zone.	-	-
170616-13	West Property	571183	5538241	d3	High strain zone.	-	-
170616-14	West Property	571206	5538722	V3	Weakly altered basalt. Orthogonal quartz veining pattern (east-west and north-south).	-	-
170616-15	West Property	571331	5538744	CT	Deformation zone contact showing quartz veining in sub-vertical fractures.	-	-

TABLE 25 : 2016 GEOLOGICAL STATIONS FROM THE WESTERN PART OF THE MONEXCO PROPERTY.

Technical Report on the Monexco Property, McCorkill Township, Chibougamau, Quebec. Vol.1

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
WEST	N171849	GS	2015	571925	5538288	0.005
WEST	S279967	CS	2016	570517	5538299	0.006
WEST	S279968	CS	2016	570554	5538338	0.006
WEST	N171758	GS	2015	570588	5538352	0.005
WEST	N171759	GS	2015	570588	5538352	0.005
WEST	N171506	GS	2015	570675	5538384	0.005
WEST	N171507	GS	2015	570675	5538384	0.005
WEST	N171752	GS	2015	570671	5538387	0.005
WEST	N171753	GS	2015	570671	5538387	0.005
WEST	N171754	GS	2015	570671	5538387	0.006
WEST	N171755	GS	2015	570667	5538394	0.005
WEST	N171787	GS	2015	570154	5538408	0.005
WEST	N171751	GS	2015	570660	5538425	0.005
WEST	N171761	GS	2015	570054	5538475	0.005
WEST	N171762	GS	2015	570054	5538475	0.005
WEST	N171786	GS	2015	570191	5538475	0.005
WEST	S279965	CS	2016	570194	5538478	0.005
WEST	S279966	CS	2016	570195	5538479	0.005
WEST	N171756	GS	2015	570656	5538509	0.005
WEST	N171757	GS	2015	570656	5538509	0.005
WEST	N171533	GS	2015	570480	5538524	0.005
WEST	N171534	GS	2015	570480	5538524	0.057
WEST	N171515	GS	2015	570250	5538526	0.005
WEST	N171535	GS	2015	570473	5538526	0.056
WEST	S279810	CS	2016	571999	5538648	0.005
WEST	N171536	GS	2015	571211	5538689	0.005
WEST	N171537	GS	2015	571211	5538689	0.005
WEST	S279680	BLD	2016	571348	5538695	0.015
WEST	N171572	GS	2015	572043	5538705	0.005
WEST	S279681	CS	2016	571333	5538750	0.006
WEST	S280451	CS	2016	571350	5538786	0.017
WEST	S280452	CS	2016	571348	5538803	0.005
WEST	S279700	CS	2016	572009	5538844	0.005
WEST	S280436	RB-BLD	2016	572007	5538844	0.018
WEST	S280440	RB-BLD	2016	571954	5538856	0.005
WEST	S280441	RB-BLD	2016	571947	5538856	0.005
WEST	S280439	RB-BLD	2016	571952	5538857	0.005
WEST	S280442	RB-BLD	2016	571948	5538857	0.005
WEST	S280443	RB-BLD	2016	571946	5538857	0.006
WEST	S280444	RB-BLD	2016	571947	5538859	0.005

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
WEST	S279677	BLD	2016	571957	5538862	0.006
WEST	S279678	BLD	2016	571956	5538862	0.005
WEST	S280438	RB-BLD	2016	571972	5538865	0.005
WEST	S280437	RB-BLD	2016	571981	5538867	0.005
WEST	S279679	BLD	2016	571979	5538877	0.005
WEST	S280445	RB-BLD	2016	572005	5538878	0.014
WEST	N171798	GS	2015	569968	5538890	0.005
WEST	N171799	GS	2015	569968	5538891	0.005
WEST	N171800	GS	2015	569968	5538891	0.005
WEST	S279604	BLD	2016	570707	5538909	0.01
WEST	N171827	GS	2015	570807	5538925	0.005
WEST	N171828	GS	2015	570807	5538925	0.005
WEST	N171826	GS	2015	570810	5538942	0.005
WEST	N171508	GS	2015	570560	5538946	0.005
WEST	N171779	GS	2015	570560	5538946	0.008
WEST	N171566	GS	2015	570649	5538948	0.005
WEST	N171824	GS	2015	570655	5538951	0.005
WEST	N171778	GS	2015	570537	5538954	0.015
WEST	N171567	GS	2015	570913	5538961	0.005
WEST	N171825	GS	2015	570661	5538963	0.009
WEST	N171780	GS	2015	570475	5538969	0.005
WEST	N171781	GS	2015	570475	5538969	0.01
WEST	N172225	BLD	2016	570599	5539007	0.006
WEST	S279672	BLD	2016	572049	5539039	0.005
WEST	S279673	BLD	2016	572049	5539041	0.005
WEST	N172224	CS	2016	570624	5539044	0.005
WEST	S279674	BLD	2016	572065	5539051	0.005
WEST	S279676	BLD	2016	572039	5539058	0.005
WEST	S279675	BLD	2016	572019	5539094	0.005
WEST	N171510	GS	2015	570173	5539103	0.005
WEST	N171782	GS	2015	570273	5539106	0.005
WEST	N171511	GS	2015	570178	5539121	0.005
WEST	S279961	BLD	2016	570590	5539152	0.015
WEST	S279964	BLD	2016	570522	5539156	0.005
WEST	S279963	BLD	2016	570522	5539159	0.005
WEST	S279960	BLD	2016	570575	5539161	0.063
WEST	S279958	BLD	2016	570583	5539162	0.005
WEST	S279962	BLD	2016	570579	5539166	0.005
WEST	S279959	BLD	2016	570579	5539171	0.025
WEST	N171776	GS	2015	570079	5539171	0.005

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
WEST	S279729	BLD	2016	570211	5539178	0.005
WEST	S279956	BLD	2016	570602	5539180	0.005
WEST	S279955	BLD	2016	570598	5539184	0.005
WEST	S279957	CS	2016	570597	5539200	0.02
WEST	S279565	CS	2016	570244	5539201	0.005
WEST	S279566	CS	2016	570244	5539201	0.005
WEST	S279631	CS	2016	570512	5539203	0.005
WEST	S279564	CS	2016	570238	5539221	0.02
WEST	N171783	GS	2015	570319	5539231	0.005
WEST	N171784	GS	2015	570319	5539231	0.005
WEST	N171788	GS	2015	570319	5539231	0.005
WEST	N171789	GS	2015	570319	5539231	0.005
WEST	N171790	GS	2015	570319	5539231	0.005
WEST	N171791	GS	2015	570319	5539231	0.005
WEST	N171792	GS	2015	570319	5539231	0.005
WEST	N171793	GS	2015	570319	5539231	0.005
WEST	N171794	GS	2015	570319	5539231	0.005
WEST	N171795	GS	2015	570319	5539231	0.005
WEST	N171796	GS	2015	570319	5539231	0.005
WEST	S279727	CS	2016	570100	5539234	0.005
WEST	S279730	CS	2016	570203	5539235	0.06
WEST	S279726	CS	2016	570086	5539237	0.005
WEST	S279728	CS	2016	570068	5539241	0.006
WEST	N171797	GS	2015	570453	5539249	0.005
WEST	S279562	BLD	2016	570093	5539300	0.007
WEST	S279559	BLD	2016	570088	5539301	0.005
WEST	S279563	BLD	2016	570091	5539305	0.005
WEST	S279561	BLD	2016	570088	5539306	0.005
WEST	S279560	BLD	2016	570089	5539309	0.005
WEST	S279629	CS	2016	570813	5539322	0.005
WEST	N171513	GS	2015	570215	5539323	0.005
WEST	N171514	GS	2015	570215	5539323	0.005
WEST	N171512	GS	2015	570214	5539324	0.006
WEST	S279953	CS	2016	570815	5539330	0.005
WEST	S279630	CS	2016	570812	5539331	0.005
WEST	N171563	GS	2015	570686	5539371	0.005
WEST	N171816	GS	2015	570690	5539374	0.005
WEST	S279954	BLD	2016	570804	5539380	0.005
WEST	N171565	GS	2015	570580	5539446	0.005
WEST	S279750	CS	2016	570679	5539465	0.007

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
WEST	S279749	CS	2016	570672	5539475	0.284
WEST	S279743	CS	2016	570670	5539478	0.018
WEST	S279570	CS	2016	570663	5539480	0.005
WEST	S279745	CS	2016	570673	5539480	0.033
WEST	S279744	CS	2016	570666	5539481	0.01
WEST	S279748	CS	2016	570662	5539481	2.65
WEST	S279571	CS	2016	570661	5539482	0.068
WEST	S279573	CS	2016	570651	5539482	1.23
WEST	S279747	CS	2016	570667	5539482	0.523
WEST	S279572	CS	2016	570640	5539485	0.031
WEST	S279741	CS	2016	570656	5539487	0.005
WEST	S279742	CS	2016	570661	5539488	0.008
WEST	S279746	CS	2016	570658	5539491	0.023
WEST	N171818	GS	2015	570635	5539646	0.005
WEST	N171819	GS	2015	570635	5539646	0.005
WEST	N171820	GS	2015	570635	5539646	0.005
WEST	N171821	GS	2015	570635	5539646	0.005
WEST	N171822	GS	2015	570635	5539646	0.005
WEST	N171823	GS	2015	570635	5539646	0.005
WEST	N171814	GS	2015	570637	5539649	0.005
WEST	N171815	GS	2015	570637	5539649	0.005
WEST	N171785	GS	2015	570972	5539656	0.005
WEST	N171564	GS	2015	570800	5539659	0.01
WEST	N171774	GS	2015	570130	5539742	0.005
WEST	N171775	GS	2015	570130	5539742	0.005
WEST	N171509	GS	2015	570220	5539758	0.01
WEST	N171561	GS	2015	570882	5539828	0.006
WEST	N171562	GS	2015	570882	5539828	0.008
WEST	N171559	GS	2015	570880	5539829	0.007
WEST	N171560	GS	2015	570880	5539829	0.006
WEST	N171768	GS	2015	570185	5539840	0.005
WEST	N171767	GS	2015	570184	5539841	0.005
WEST	N171769	GS	2015	570139	5539852	0.132
WEST	N171516	GS	2015	570138	5539853	0.005
WEST	N171771	GS	2015	570135	5539894	0.202
WEST	N171772	GS	2015	570135	5539894	0.359
WEST	N171773	GS	2015	570135	5539894	0.151
WEST	N171770	GS	2015	570141	5539905	0.005
WEST	N171765	GS	2015	570213	5539974	0.063
WEST	N171766	GS	2015	570213	5539974	0.073

GS: grab samples, BLD: glacial boulders, CS: composite samples, RB-BLD: river bed boulders

TABLE 26 : 2015-2016 SAMPLING COMPILATION FROM THE WESTERN AREA OF THE MONEXCO PROPERTY.

Monexco Eastern Property

Different prospection targets were initially identified with the 2008 airborne magnetic and VLF survey using a combination of strong magnetic contrasts juxtaposed to conductors. In the property context, VLF conductors can be interpreted as graphite bearing sediments, strong sulfides concentrations or faults zones. The east-west to north-west trending contacts and fabrics offset on north-east breaks were considered as potential targets for gold mineralization following the Monexco gold system model.

Despite the high number of anomalies to check, environmental conditions made arduous the search for new outcropping area outside known area.

The corresponding polygon in the UTM NAD83 Z18 coordinates system is 575 000m E to 577 000m E and 5 538 500m N to 5 540 370m N. 16 bedrock samples, 14 boulders samples and 1 sand sample came from this area.

The property south-east corner hosts one of the few isolated gold values close to the 1 g/t threshold obtained during the program. The context of this discovery has a strong environmental component. Sample S279502 (0.98 g/t Au) comes from a series of boulders cleared by a beaver dam washout. Lithologies sampled by this event include amphibolitized basalt, quartzo feldspathic porphyry dykes and massive to layered silicified host rock of unknown origin. The mineralized sample is of this last type.

The sampling coverage took advantage of access road sides and topographic highs. This approach allowed to cover the south-east continuity of the McCorkill trend inside an influence of about 200 metres. The structural trend defined loosely by the sampling coverage follows a south-east orientation with a strong north-west dip. The proximity of the late-tectonic granitic pluton is associated with a sharp increase of the metamorphic grade. Sampled rocks are mainly massive to layered amphibolite with more felsic layers corresponding to felsic or sedimentary contacts.

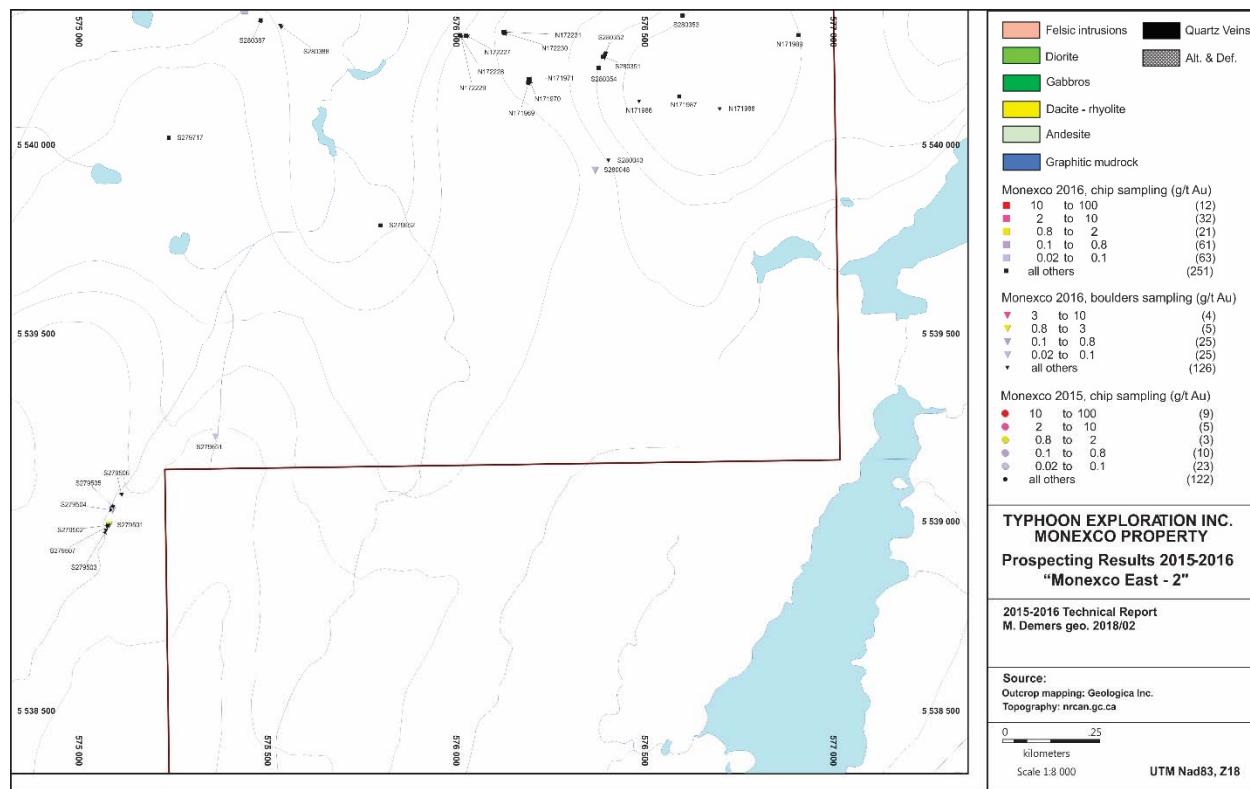


FIGURE 40 : 2015-2016 SAMPLING COVERING THE EASTERN AREA OF THE MONEXCO PROPERTY.

STATION	SITE	UZ18-EAST	UZ18-NORD	Sigéom Code	DESCRIPTION	STRUCTURE	TYPE
270916-4	Eastern property	576216	5540205	V3AM	Layered amphibolite	90/85	S0
270916-5	Eastern property	576035	5540320	V3AM	Massive amphibolite, fractured with a variable texture. Traces of sulfides.	-	-
270916-6	Eastern property	576148	5540320	V3AM	Compositional layering with diopside.	95/72	S0-S1
270916-7	Eastern property	576148	5540320	S3	Siliceous layering corresponding to sedimentary structure.	95/72	S0-S1

TABLE 27 : 2016 GEOLOGICAL STATIONS FROM THE EASTERN AREA OF THE MONEXCO PROPERTY.

AREA	SAMPLE	TYPE	YEAR	U83Z18-EST	U83Z18-NORD	Au-ppm
EASTERN PROP	N171986	BLD	2016	576508	5540138	<0.005
EASTERN PROP	N171987	BLD	2016	576615	5540151	<0.005
EASTERN PROP	S279501	BLD	2016	575101	5539013	0.017
EASTERN PROP	S279502	BLD	2016	575101	5539013	0.976
EASTERN PROP	S279503	BLD	2016	575093	5538997	<0.005
EASTERN PROP	S279504	BLD	2016	575110	5539053	0.025
EASTERN PROP	S279505	BLD	2016	575113	5539061	0.01
EASTERN PROP	S279506	BLD	2016	575135	5539092	<0.005
EASTERN PROP	S279507	BLD	2016	575100	5539011	0.017
EASTERN PROP	S279652	BLD	2016	575822	5539809	<0.005
EASTERN PROP	S280043	BLD	2016	576427	5539981	0.006
EASTERN PROP	S280048	BLD	2016	576391	5539956	0.078
EASTERN PROP	S280388	BLD	2016	575556	5540338	<0.005
EASTERN PROP	S280389	BLD	2016	575556	5540338	<0.005
EASTERN PROP	N171969	CS	2016	576214	5540188	<0.005

AREA	SAMPLE	TYPE	YEAR	U83Z18-EST	U83Z18-NORD	Au-ppm
EASTERN PROP	N171970	CS	2016	576217	5540191	<0.005
EASTERN PROP	N171971	CS	2016	576215	5540197	<0.005
EASTERN PROP	N171988	CS	2016	576722	5540118	<0.005
EASTERN PROP	N171989	CS	2016	576931	5540314	<0.005
EASTERN PROP	N172227	CS	2016	576049	5540312	<0.005
EASTERN PROP	N172228	CS	2016	576032	5540314	0.012
EASTERN PROP	N172229	CS	2016	576034	5540313	<0.005
EASTERN PROP	N172230	CS	2016	576150	5540319	<0.005
EASTERN PROP	N172231	CS	2016	576148	5540322	<0.005
EASTERN PROP	S279717	CS	2016	575260	5540041	<0.005
EASTERN PROP	S280351	CS	2016	576412	5540256	<0.005
EASTERN PROP	S280352	CS	2016	576418	5540263	<0.005
EASTERN PROP	S280353	CS	2016	576623	5540365	<0.005
EASTERN PROP	S280354	CS	2016	576401	5540226	<0.005
EASTERN PROP	S280387	CS	2016	575504	5540353	0.006
EASTERN PROP	S279651	SAND	2016	575385	5539245	0.055

GS: grab samples, BLD: glacial boulders, CS: composite samples

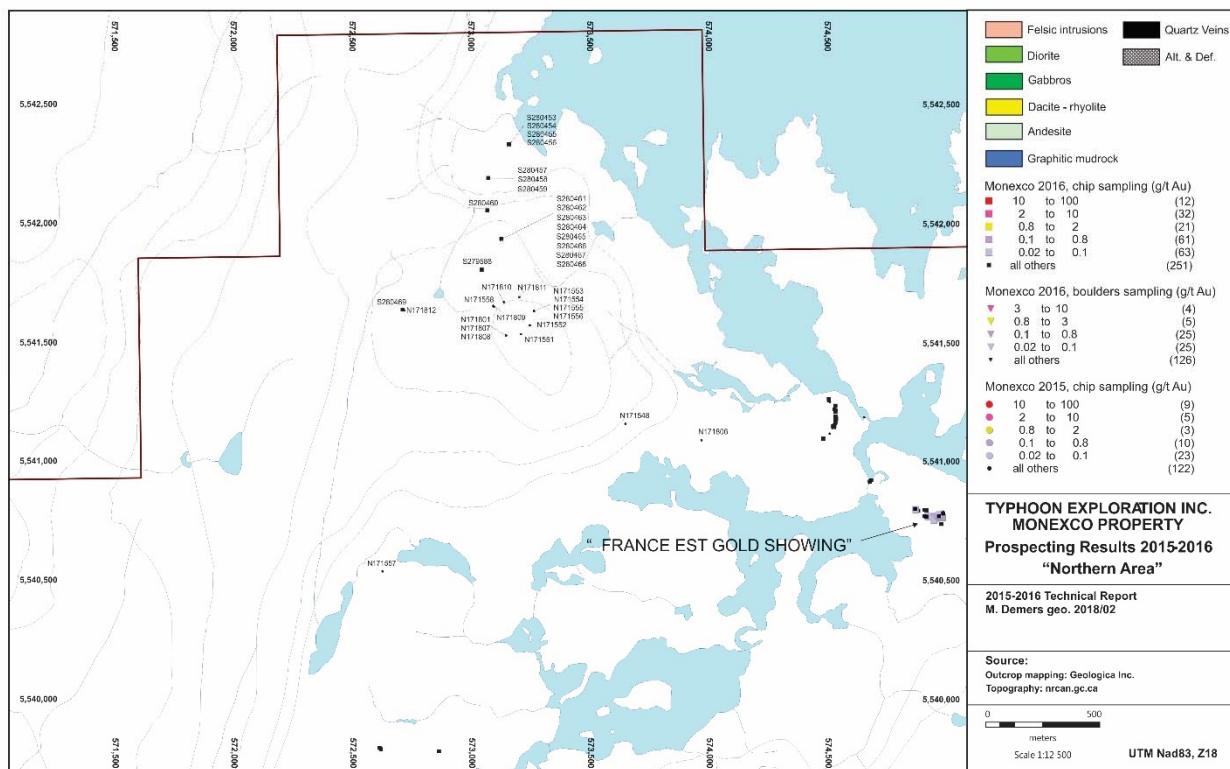
TABLE 28 : 2015-2016 SAMPLING COMPILED FROM THE EASTERN AREA OF THE MONEXCO PROPERTY.

McCorkill Trend

Prospecting and sampling was conducted on 4 main areas of the Mc Corkill trend over an approximate strike length of 3.5 km. The corresponding polygon in the UTM NAD83 Z18 is 572 500m E to 575 775m E and 5 540 250m N to 5 542 500m N. Total of 109 samples were taken, split between 106 bedrock samples and 3 boulder samples.

The so called McCorkill stripping, officially identified as the Lac France-Est gold showing in the Sigeom system (32I/04-1000). The area was revisited with the objective to evaluate at an early stage the gold potential based on gold results, mineralization style and the geological environment. The McCorkill context was previously described and evaluated by Violette (2005), Beauregard (2003) and Violette (2002) where the land position was taken by Typhoon. Beside dishevelled works soiled by deceitful results originating from Shaller's Claims Company works done during the eighties, the McCorkill trend is punctuated by numbers of conductors of different intensity forming a 500 m wide envelope centered on the McCorkill stripping.

During 2016 site visits, different areas of interest were sampled along the 275 m long stripping. Additional samples were taken where outcropping rocks are observed mostly along access road sides. Total of 38 samples were taken on the historical stripped area.


Exploration and sampling works have highlighted a 50 m wide lithological sequence composed of fine grain sediments, sulfides rich graphitic mudrock, iron formations, felsic tuffs and amphibolitized basalt, from south to north. This transitional sequence is marked by strong ductile deformation and the injection of quartz feldspathic porphyry dykes, also recrystallized and possibly altered. Dykes contacts control quartz veining which evolves in giant quartz veins with a maximum thickness reaching 10 m. Veins terminations are associated with north-south fracturing. The quartz texture is commonly brecciated and heterogenous showing a dark blue to whitish color.

300 m to the north-west, the potential extension of the McCorkill structure was sampled over about 100 m using a continuous bedrock exposure cross cutting targeted contact at right angle.

This surveyed environment is characterized by a monotonous sequence of fine flyschic sediments in contact with bedded tuffs of intermediate composition. The deformation and alteration level are low to moderate with sedimentary structures preserved and cut by weak conjugated fractures. One kilometre to the north-west, sampling covered a pyrrhotite rich strongly layered amphibolite.

To the south-east of the stripped area, a contact between graphitic mudrock and siliceous wacke was identified along strike with the France East gold showing. At outcrop scale, strong north-east fractures can be interpreted as coeval with dismembered drag folds. The general folding orientation is north-west (N330 degrees) with a moderate 60 degrees north-east dip. This last environment is typically sulfides rich with remobilization structures.

The sampling concentrated around the blasted trench area returned one result of 1.3 g/t gold originating from a sulfide rich layer sampled immediately north of the trench. 5 samples from the blasted rock pile gave gold grade between 0.1 and 0.7 g/t. Two results of 0.75 and 0.2 g/t were obtained from the outcrop. A detached block composed of a mixture of grey quartz veins and graphitic schist taken at the eastern end of the stripped area gave a result of 0.255 g/t. An examination of the entire stripping highlighted the absence of historical sampling in most areas.

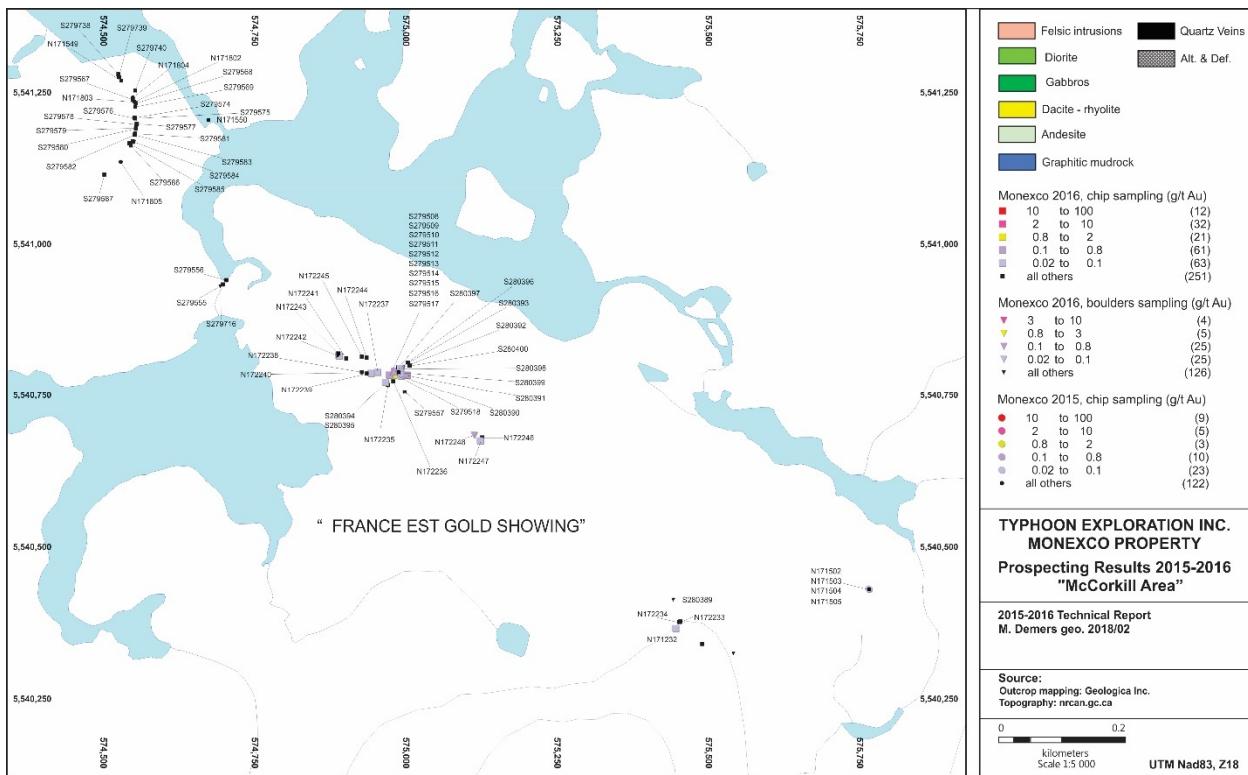


FIGURE 41 : 2015-2016 SAMPLING OF MC CORKILL TREND AND FRANCE EST GOLD SHOWING.

STATION	SITE	UZ18-EAST	UZ18-NORD	Sgeom Code	DESCRIPTION	STRUCTURE	TYPE
010616-5	McCorkill	575014	5540772	I1QZ	Sub-parallel felsic dykes swarm hosted in sediments, partly dismembered. Observed apparent thickness of 75 metres.	130/85	S0-S1
130616-12	13/06/2016	18	573159	5541969	Layered amphibolite with quartz veinlets. Mafic dyke (LAM?) oblique to the main fabric.	-	-
130616-13	McCorkill	574539	5541293	S3S6	Amphibolitized fine grain sediments.	-	-
140616-4	14/06/2016	18	573077	5541840	Graphitic sediments	106/85	S0
140616-5	McCorkill	574566	5541220	CT	Gradual sediments-volcanics contacts over 10 metres. Volcanics amphibolitization.	125/85	S0
140616-6	McCorkill	574567	5541206	AM	Amphibolitized basalt.	125/85	S0-S1
140616-7	McCorkill	574516	5541125	AMd3	Layered sediments observed over 100 metres.	-	-
280916-1	McCorkill	575504	5540353	S6GP	Siliceous and graphitic mudrock assemblage.	085/85	S0-S1
280916-2	McCorkill	575468	5540390	S6GP-S3	Fractures zones associated with drag folding.	335/85 330/60 040/43	S0-S1 AP FR
280916-3	McCorkill	574976	5540783	R1QZ-FP	Metric quartz vein in contact with a felsic dyke.	-	-
280916-4	McCorkill	574994	5540796	R1QZ	Blasted excavation limit. Over 15 metres: quartz veining inside a deformed sulfides bearing undefined host rock.	-	-
280916-5	McCorkill	575019	5540811	V3AMGR	Strongly deformed basalt with disseminated pyrrhotite.	295/72	S1
280916-6	McCorkill	574956	5540800	S3I1	Felsic dykes swarm hosted in deformed sediments over an apparent thickness of 75 metres.	-	-
280916-7	McCorkill	574898	5540826	S6R1QZ	West limit of the stripping area, grey-blue micro-fractured and brecciated quartz veins. Observed over > 3 metres.	-	-
280916-8	McCorkill	574938	5040828	R1QZ	Quartz veins over 7 metres.	-	-
280916-9	McCorkill	575045	5540747	R1QZV3AM	Vein termination in association with a north-south fractures.	-	-
280916-10	McCorkill	575138	5540690	V3AMR1QZ	Broken felsic dykes with associated quartz veins.	-	-
280916-10	McCorkill	575138	5540690	S6GPMYL	Layered amphibolite in contact with graphitic mudrock. Mylonitic deformation.	-	-

TABLE 29 : 2016 GEOLOGICAL STATIONS FROM THE MCCORKILL TREND AND FRANCE EST GOLD SHOWING AREA, MONEXCO PROPERTY.

Technical Report on the Monexco Property, McCorkill Township, Chibougamau, Québec

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
MCCORKILL	N171502	GS	2015	575780	5540443	0.038
MCCORKILL	N171503	GS	2015	575780	5540443	0.017
MCCORKILL	N171504	GS	2015	575780	5540443	0.075
MCCORKILL	N171505	GS	2015	575780	5540443	0.012
MCCORKILL	N171548	GS	2015	573682	5541191	0.013
MCCORKILL	N171549	GS	2015	574543	5541283	<0.005
MCCORKILL	N171550	GS	2015	574687	5541218	<0.005
MCCORKILL	N171551	GS	2015	573241	5541571	0.009
MCCORKILL	N171552	GS	2015	573279	5541608	0.011
MCCORKILL	N171553	GS	2015	573296	5541667	0.008
MCCORKILL	N171554	GS	2015	573296	5541668	0.011
MCCORKILL	N171555	GS	2015	573296	5541669	0.012
MCCORKILL	N171556	GS	2015	573296	5541669	0.018
MCCORKILL	N171557	GS	2015	572658	5540570	<0.005
MCCORKILL	N171558	GS	2015	573125	5541690	<0.005
MCCORKILL	N171801	GS	2015	573179	5541566	0.014
MCCORKILL	N171802	GS	2015	574565	5541248	0.016
MCCORKILL	N171803	GS	2015	574565	5541248	<0.005
MCCORKILL	N171804	GS	2015	574562	5541255	<0.005
MCCORKILL	N171805	GS	2015	574542	5541149	<0.005
MCCORKILL	N171806	GS	2015	574002	5541122	0.007
MCCORKILL	N171807	GS	2015	573179	5541566	<0.005
MCCORKILL	N171808	GS	2015	573179	5541566	<0.005
MCCORKILL	N171809	GS	2015	573128	5541687	0.006
MCCORKILL	N171810	GS	2015	573169	5541706	0.01
MCCORKILL	N171811	GS	2015	573234	5541726	0.007
MCCORKILL	N171812	GS	2015	572749	5541671	0.008
MCCORKILL	N172232	CS	2016	576148	5540322	0.032
MCCORKILL	N172233	CS	2016	575466	5540389	0.009
MCCORKILL	N172234	CS	2016	575468	5540390	<0.005
MCCORKILL	N172235	CS	2016	574984	5540781	<0.005
MCCORKILL	N172236	CS	2016	574993	5540787	<0.005
MCCORKILL	N172237	CS	2016	574967	5540802	0.084
MCCORKILL	N172238	CS	2016	574956	5540800	0.033
MCCORKILL	N172239	CS	2016	574949	5540800	0.015
MCCORKILL	N172240	CS	2016	574941	5540802	0.012
MCCORKILL	N172241	CS	2016	574915	5540825	<0.005
MCCORKILL	N172242	CS	2016	574903	5540829	0.046
MCCORKILL	N172243	CS	2016	574902	5540833	0.013
MCCORKILL	N172244	CS	2016	574949	5540826	<0.005
MCCORKILL	N172245	CS	2016	574941	5540828	<0.005
MCCORKILL	N172246	CS	2016	575140	5540693	0.007
MCCORKILL	N172247	CS	2016	575137	5540687	0.037
MCCORKILL	N172248	BLD	2016	575127	5540697	0.255
MCCORKILL	S279508	CS	2016	574987	5540797	0.148
MCCORKILL	S279509	CS	2016	574987	5540797	0.052
MCCORKILL	S279510	CS	2016	574987	5540797	0.046
MCCORKILL	S279511	CS	2016	574987	5540797	0.017
MCCORKILL	S279512	CS	2016	574987	5540797	0.026
MCCORKILL	S279513	CS	2016	574987	5540797	0.38
MCCORKILL	S279514	CS	2016	574987	5540797	0.008
MCCORKILL	S279515	CS	2016	574987	5540797	0.32
MCCORKILL	S279516	CS	2016	574987	5540797	0.105
MCCORKILL	S279517	CS	2016	574987	5540797	0.67

AREA	SAMPLE	TYPE	YEAR	UZ18-EST	UZ18-NORD	Au-ppm
MCCORKILL	S279518	CS	2016	574999	5540797	1.32
MCCORKILL	S279555	CS	2016	574711	5540947	<0.005
MCCORKILL	S279556	CS	2016	574717	5540954	<0.005
MCCORKILL	S279557	CS	2016	575012	5540769	<0.005
MCCORKILL	S279567	CS	2016	574562	5541252	<0.005
MCCORKILL	S279568	CS	2016	574567	5541246	<0.005
MCCORKILL	S279569	CS	2016	574566	5541240	<0.005
MCCORKILL	S279574	CS	2016	574565	5541222	<0.005
MCCORKILL	S279575	CS	2016	574566	5541221	<0.005
MCCORKILL	S279576	CS	2016	574566	5541221	<0.005
MCCORKILL	S279577	CS	2016	574569	5541212	<0.005
MCCORKILL	S279578	CS	2016	574569	5541211	<0.005
MCCORKILL	S279579	CS	2016	574567	5541205	<0.005
MCCORKILL	S279580	CS	2016	574567	5541204	<0.005
MCCORKILL	S279581	CS	2016	574566	5541196	<0.005
MCCORKILL	S279582	CS	2016	574565	5541194	<0.005
MCCORKILL	S279583	CS	2016	574565	5541194	<0.005
MCCORKILL	S279584	CS	2016	574562	5541183	<0.005
MCCORKILL	S279585	CS	2016	574556	5541180	<0.005
MCCORKILL	S279586	CS	2016	574559	5541176	<0.005
MCCORKILL	S279587	CS	2016	574519	5541128	<0.005
MCCORKILL	S279588	CS	2016	573076	5541841	<0.005
MCCORKILL	S279716	BLD	2016	574707	5540944	0.018
MCCORKILL	S279738	CS	2016	574538	5541294	<0.005
MCCORKILL	S279739	CS	2016	574539	5541289	<0.005
MCCORKILL	S279740	CS	2016	574566	5541267	<0.005
MCCORKILL	S280389	BLD	2016	575456	5540426	<0.005
MCCORKILL	S280390	CS	2016	575005	5540796	0.062
MCCORKILL	S280391	CS	2016	575016	5540797	0.194
MCCORKILL	S280392	CS	2016	575009	5540811	<0.005
MCCORKILL	S280393	CS	2016	575017	5540818	0.009
MCCORKILL	S280394	CS	2016	574981	5540786	<0.005
MCCORKILL	S280395	CS	2016	574980	5540785	0.026
MCCORKILL	S280396	CS	2016	574995	5540803	0.752
MCCORKILL	S280397	CS	2016	575001	5540810	0.01
MCCORKILL	S280398	CS	2016	575005	5540808	0.026
MCCORKILL	S280399	CS	2016	575002	5540802	0.011
MCCORKILL	S280400	CS	2016	575020	5540813	<0.005
MCCORKILL	S280453	CS	2016	573191	5542367	<0.005
MCCORKILL	S280454	CS	2016	573191	5542367	<0.005
MCCORKILL	S280455	CS	2016	573191	5542367	<0.005
MCCORKILL	S280456	CS	2016	573191	5542367	<0.005
MCCORKILL	S280457	CS	2016	573104	5542226	0.007
MCCORKILL	S280458	CS	2016	573104	5542226	<0.005
MCCORKILL	S280459	CS	2016	573104	5542226	0.01
MCCORKILL	S280460	CS	2016	573100	5542091	<0.005
MCCORKILL	S280461	CS	2016	573159	5541971	<0.005
MCCORKILL	S280462	CS	2016	573159	5541971	<0.005
MCCORKILL	S280463	CS	2016	573159	5541971	<0.005
MCCORKILL	S280464	CS	2016	573159	5541971	<0.005
MCCORKILL	S280465	CS	2016	573159	5541971	<0.005
MCCORKILL	S280466	CS	2016	573159	5541971	<0.005
MCCORKILL	S280467	CS	2016	573159	5541971	<0.005
MCCORKILL	S280468	CS	2016	573159	5541971	<0.005
MCCORKILL	S280469	CS	2016	572743	5541674	0.008

GS: grab samples, BLD: glacial boulders, CS: composite samples

TABLE 30 : 2015-2016 SAMPLING COMPILATION FROM MCCORKILL TREND AND FRANCE EST GOLD SHOWING AREA, MONEXCO PROPERTY.

10. DRILLING

10.1 Historical drilling

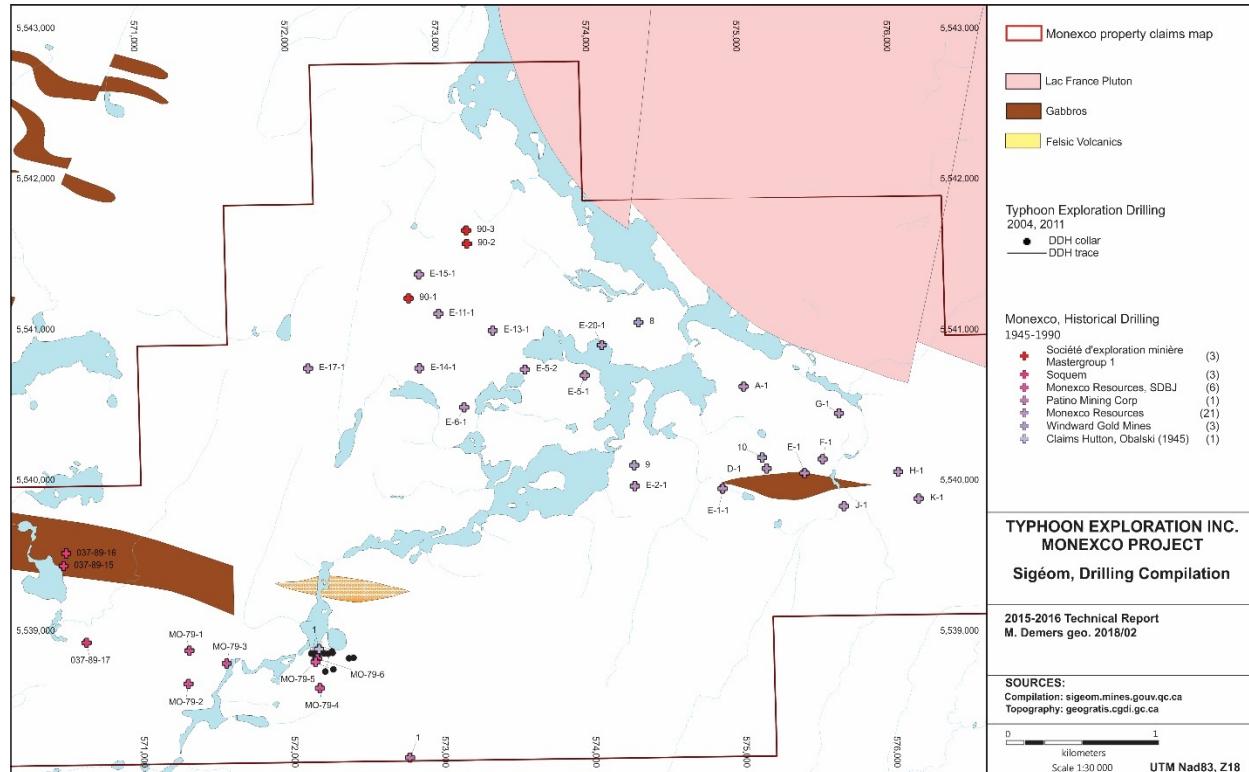
Total of 3,582 m distributed in 37 holes were drilled inside the actual property outline between 1945 and 1991, before Typhoon took the property. Drill holes lengths varied between 12 m and 251 m. This information is accessible in public database (Sigeom.mines.gouv.qc.ca). This report is based on archived core logging journals and location map referenced as Assessment Reports. Otherwise, there is any physical traces left of this activity in the field. Chronological order of works was produced under section 6.2.

Most holes reported were drilled by Monexco Resources between 1974 and 1975 to cover a group of conductors located south of Lac France. As discussed in section 6.1, the mineralization context corresponds to sulfides rich layers located close to felsic-mafic contacts. Holes summary from the Sigeom database outlines the association between feldspathic dykes, quartz veining and chloritization envelopes associated with massive to semi-massive sulfides concentrations. Only sections with observable base metal sulfides occurrence were samples and assayed for copper - zinc - lead. Except isolated samples, gold was generally not assayed.

Mineral potential evaluation reports produced under Typhoon ownership have mentioned historical copper results in 3 holes drilled around Lac France, supposedly in the Waconichi Formation. From that, three holes located inside actual property limits show intervals of 0.25% Copper over 2.5 m and 0.15% zinc over 3.7 m (Violet, 2005).

Soquem covered the area west of Rivière France by 3 holes with length from 168 m and 251 m, aligned on a 600 m long north-south section, (D'Amboise, 1989). Hole 89-16 cut a stacking of ten intrusions over a drilled length of 168 m. The maximum core length interval reached for an individual intrusion is 27.5 m. Two gold bearing intercepts of 6.92 g/t gold over 1.0 m and 0.8 g/t over 1 m come respectively from holes 89-15 and 89-17. The drilled section interpretation based on GM-49751 assessment report shows a strongly dipping massive porphyry dykes swarm in contact with a graphitic mudrock units.

Company	DDH number	Metrage	Year	Ass. Report
Claims Hutton, Obalski 1945 Ltd.	1	12.0	1945	GM 08807
Windward Gold Mines Ltd.	3	374.0	1956	GM 04609-B
Monexco Resources Ltd.	20	1931.0	1975	GM 29996
Patino Mining Corp.	1	100.0	1974	GM 30675
Monexco Resources Ltd., SDBJ	6	194.0	1979	GM 36005
SOQUEM	3	610.0	1989	GM 49751
Société d'exploration minière Mastergroup 1	3	361.0	1990	GM 49675
	37	3582.0		


TABLE 31 : COMPILED OF HISTORICAL DIAMOND DRILLING, MONEXCO PROPERTY.

SOURCE: SIGEOM.MINES.GOUV.QC.CA

DDH	Company	U83Z18-EST	U83Z18-NOR	INTERVAL (M)	GRADE	METAL
DDH No.10	Windward Gold Mines	574379	5541105	4.0	0.25	Cu%
A-1	Monexco Resources	575072	5540678	2.5	0.15	Zn%
G-1	Monexco Resources	575504	5540500	3.7	0.15	Zn%
037-89-15	Soquem	570535	5539486	1.1	6.92	Au(g/t)
037-89-17	Soquem	570553	5539569	1.0	0.80	Au(g/t)

TABLE 32 : DRILL RESULTS COMPILED FOR COPPER, ZINC AND GOLD FROM MONEXCO HISTORICAL DRILLING.

SOURCE: SIGEOM.MINES.GOUV.QC.CA

10.2 Drilling by Typhoon

Typhoon drilled total of 1364.76 m in 14 holes during two programs. In 2004, a first drilling pattern of 7 holes for 320.6 meters was implanted at the eastern limit of the Monexco No.1 stripping and on the Monexco No. 3 stripping. In 2011, a second program of 7 holes for 1,044 meters was drilled west and under the Monexco No.1 stripping, and under the VG stripping. This last program used 150 m holes length drilled at varied orientation to cross cut veins observed at surface with strong angle.

Diamond drill holes MO-11-01, 02, 03 were planned to cover the potential influence of the dyke swarm north of the stripped area, under Rivière France, by using 330 to 20 degrees drill azimuth. The continuity of north-east quartz-tourmaline veins sampled at surface was tested with holes MO-11-04 and MO-11-05 drilled following an azimuth of 290 degrees. Holes MO-11-06 and 07 targeted the VG stripping about 100 meters southward. At this place, north-east and east-west veins orientation were tested using respectively 290 and 015 degrees drill azimuth.

Information from 2011 and 2004 drill programs were extracted respectively from: « Rapport technique des travaux de forage 2011 sur la propriété Monexco (Beauregard A.J., et al., 2012) » and « Campagne de sondage 2004, propriété Monexco, camp minier de Chibougamau, SNRC 32G16, 32H13, 32I04 et 32J01, province de Québec (Rioux et al., et al., 2005) ». The Author has controlled on the field holes positions and reviewed core stored at the Company facility in the Mont-Brun district, town of Rouyn-Noranda, Québec.

The sequence of holes that cross cut the Monexco No.1 stripping on its complete section lets see a quartzo feldspathic dykes swarm embedded in a moderately to strongly foliated basalt. The entire influence of this system on cross sections varied from 50 to near 200 m when other surrounding stripping are considered.

The Monexco structure hanging wall may correspond to a strong sericitization zone at the contact with felsic dykes cut over 30 m in hole MO-11-01 (Beauregard A.J., et al., 2012). Intrusions are of two types: rosy granitic composition with stretched automorphic quartz and potassic feldspar in a slightly hematized fine grain matrix, and a more feldspars and mafic (biotite, hornblende) phenocrysts rich monzodioritic composition with a greyish quartzo-feldspathic fine grain matrix.

Individual dykes apparent thickness varies between 1 and 25 m with a strong 60 to 70 degrees south dip inferred from surface measurements. Quartz-carbonate and quartz-tourmaline veins are conformable or cross cutting the main foliation of basalt units while veins cutting dykes do not follow any preferred orientation. In core, finely disseminated pyrite was observed in varied concentrations which shows a tendency to increase around dykes and quartz veins where it can reach 5 to 10% in volume.

Gold values between 0.1 and 1.0 grams of gold per tonne were sporadically obtained throughout dykes swarm. As detailed by Beauregard et al. (2012), gold grade higher than 0.1 g/t are located preferably close or inside quartzo feldspathic porphyry dykes. Massive and granular basalt is

the most favorable lithology for gold deposition hosting all grades above 1 g/t gold (1.735 g/t, 1.295 g/t, 4.650 g/t over 1 m in hole MO-11-05).

Assays results for each hole can be averaged using a cut off grade of 0.3 g/t and a minimum length of 1.0 meter. According to these parameters, holes MO-04-01, 02, 03, 04 give 1 or 2 intercepts between 0.4 and 1.04 g/t gold over 1 to 2.3 m. All these holes are located at a close distance from the eastern limit of the Monexco No.1 stripping. An intercept of 2.59 g/t over 1.3 m was obtained in hole MO-04-06 collared about 100 m east of the Monexco trench eastern limit.

Hole MO-11-04, one of two north-west trending holes drilled under Monexco No.1 stripping cut a succession of 9 metric intervals with gold grade going from 0.31 to 1.09 g/t spread over a 90 meters section. Gold concentrations are preferably located close to dyke contacts, associated with pyrite bearing iron carbonate and sericite alteration. Low grade halos (0.02 to 0.1 g/t) connect individual higher grades intervals. About 50 m east, Hole MO-11-05 contains mineralized intervals of 0.74 g/t over 2 m, 1.74 g/t, 4.65 g/t and 0.37 g/t, each over 1 m. Hole to hole correlation of gold values is possible when the lower half of MO-11-05 is compared with the upper section of MO-11-04. Even uncomplete with two holes, a north-east mineralized trend can be interpreted with a 40 to 50 degrees south-east dip.

A sharp difference of grade distribution and geological complexities are observed between holes MO-11-01 and MO-11-02 drilled respectively at 330 degrees and 20 degrees azimuth. Again, the north-east gold structure trend interpretation can explain why the second hole missed mineralization.

Holes MO-11-06 and MO-11-07 drilled on VG stripping returned one interval of 0.95 g/t over 1 m in hole MO-11-07 drilled to the north-west.

DDH	From:	To:	UTM-EAST	UTM-NORTH	El.	Au (g/t)	Length
MO-04-01	5.45	7.48	572310	5538909	414	0.83	2
MO-04-02	12.49	14.34	572306	5538919	408	1.04	1.8
	53.84	56.17	572287	5538933	374	0.74	2.3
MO-04-03	13.35	14.35	572308	5538921	407	0.67	1
MO-04-04	29.05	30.45	572279	5538915	399	0.71	1.4
	35.36	36.94	572277	5538919	394	0.40	1.6
	43.99	44.99	572275	5538924	388	0.55	1
MO-04-05	No value > 0.3 g/t						
MO-04-06	20.03	21.28	572448	5538882	406	2.59	1.3
MO-04-07	No value > 0.3 g/t						

TABLE 33 : DRILL INTERCEPTS FROM TYPHOON 2004 PROGRAM CALCULATED WITH MINIMUM CUT OFF GRADE OF 0.3 G/T GOLD OVER A MINIMUM LENGTH OF 1 M.

DDH	From:	To:	UTM-EAST	UTM-NORTH	El.	Au (g/t)	Length
MO-11-01	75	76	572165	5538948	354	0.60	1
	83	84	572164	5538953	348	0.51	1
MO-11-02	No value > 0.3 g/t						
MO-11-03	42	43	572227	5538915	382	0.82	1
	47	50	572228	5538919	378	0.52	3
MO-11-04	45	46	572233	5538910	379	0.33	1
	51	52	572229	5538911	375	0.60	1
	54	55	572227	5538912	372	0.32	1
	60	61	572223	5538913	368	1.09	1
	70	71	572217	5538915	360	0.35	1
	74	75	572215	5538916	357	0.37	1
	97	99	572201	5538922	339	0.33	2
	125	128	572184	5538928	317	0.31	3
	133	134	572179	5538929	312	0.44	1
	25	26	572301	5538910	393	1.74	1
MO-11-05	34	36	572295	5538912	386	0.74	2
	55	56	572282	5538916	370	4.65	1
MO-11-06	70	71	572273	5538919	359	0.37	1
MO-11-07	142	143	572234	5538826	319	0.95	1
MO-11-07	No value > 0.3 g/t						

TABLE 34 : INTERCEPTS FROM TYPHOON 2004 PROGRAM CALCULATED WITH MINIMUM CUT OFF GRADE OF 0.3 G/T GOLD OVER A MINIMUM LENGTH OF 1 M.

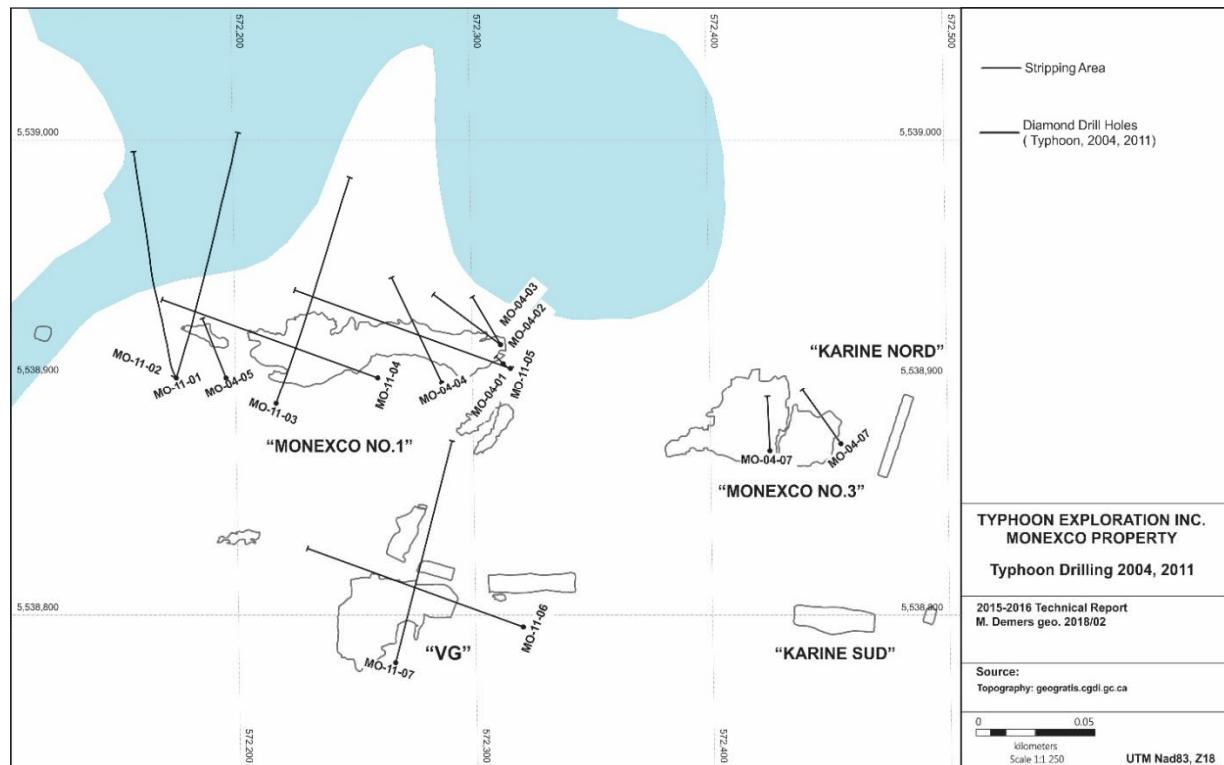


FIGURE 43 : TYPHOON EXPLORATION DIAMOND DRILLING COMPILATION MAP.

11. SAMPLE PREPARATION, ANALYSES AND SECURITY

11.1 2004-2011 Drilling

Total of 996 samples were recovered by the two programs drilled by using NQ diameter tubing. Cumulative sampling submitted for gold assaying represents 933 m, or about 68% of the core. For 2011 program, sampled core intervals were rock sawn in half, one half sent to the laboratory, the other kept in the core box with the laboratory tag number fixes in the box. Average sample length is close to 1,0 m. For the 2004 program, samples were split in half with an average length of 0.5 meter. The first hole, MO-04-01, was drilled on a small diameter (22mm) and sampled integrally without preserving the core.

Samples with length of 0.3 to 1.0 meter were assayed by fire assays on 30 g fractions using the ALS Chemex standard preparation and fire assaying procedure. Gold assays were obtained by Atomic Absorption Spectrometry with a detection limit of 5 ppb or 0.005 g/t gold. Results above 1 g/t gold were re processed with a gravimetric finish. The 2011 program included standards and blanks samples inserted in the sample chain.

11.2 2015-2016 sampling programs

The 2015-2016 prospection database contains samples of three sampling approaches and methodologies.

Channel samples: double line cut by rock saw to about 8 cm depth from surface with 3 to 4 centimeters thickness. Resulting weight for a 0.5 m long channel sample varied between 2 to 4 kg.

Grab sample: isolated block detached from the bedrock surface. Average weight 2 kg. The origin of samples is punctual, and in most cases uniform in composition.

Composite sample: coming from multiple chip fragments chiseled from the bedrock surface inside an area of about 0.5m X 0.5m. Samples composition could represent an average based on lithological variations. Average weight varying between 2 and 6 kg.

Boulder sample: Floating and eroded blocs found at surface. Samples were selected based on their sub-angular shape and mineralization indicators intensity. Boulders with a size of less than about 0.3 m were broken in pieces and fragments and randomly selected. Larger blocks were chipped locally.

Samples were put in plastic bags with sample numbers written prepared in advance to prevent errors and loss of information in case of raining conditions. The corresponding laboratory tag is put in the bag. Samples position are recorded with an handheld GPS in UTM coordinates, and

coordinates written on the sample tags pad. A picture is taken of each sampling site with the sample bags and tag number clearly visible.

Bags are closed with a plastic ribbon on the field and put on larger bags which are stored in a locked trailer in the closest town waiting for the transportation to the laboratory.

Thereafter, handheld GPS logs are download and the file compared with written samples position. In case of difference between the two sets of data, the GPS file prevails on the written information.

During 2016, results were extracted directly from ALS Chemex Webtrive database, and then cross checked with signed assays certificates.

11.3 laboratories

All samples were prepared following the same protocol by ALS Chemex based on crushing stage at 70% passing a 2mm screen (Tyler 9 mesh, US Std. No. 10). A split of 250 g is pulverized to 85% passing a 75 microns screen (Tyler 200 mesh, US Std. No. 200). A fraction of 30 g is taken for fusion.

Prepared samples are fused using a mixture based on lead oxide, sodium carbonate, borax and silica. The vitrified fused lead bead is then cupelled with a gold gold spike of 6 mg free of silver.

The resulting gold bead is dissolved in hot 0.5 ml dilute nitric acid and then in the same volume of high concentration chloridric acid. The cooled solution is diluted in demineralized water and analyzed by atomic absorption spectroscopy with a detection limit of 5 ppb or 0.005 g/t. Results higher than 10g/t are systematically re processed with a gravimetric finish with a detection limit of 0.01 g/t.

The 185 samples from the 2015 program were also processed for the assay of a series of multi-elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mo, Na, Ni, P, L, S, Sb, Sr, Th, Ti, Th, U, V, W, Zn) using aqua regia digestion and ICP-AES measurement (Inductively Coupled Plasma - Atomic Emission Spectroscopy) on a 0.5 gr sample. Results are dependant on the differential leachability of elements according to the mineralogical composition of samples processed. ALS Geochemical Procedure: ME-ICP41 Trace Level Methods Using Conventional ICP-AES Analysis.

12 channel samples assays from the 2015 program were done by metallic sieve using the 100-106 μm filter of the ALS Chemex Au-SCR21 procedure. The entire sample is pulverized and homogenized. A first cut from the homogenized sample is assayed with a detection limit of 0.05 g/t for comparison. The two sieved fractions (minus 100 μm and plus 100 μm) are weighted and assayed separately using the same detection limit on 30 g fractions. The output result is the weighted average of the two grain size classes results.

12. DATA VERIFICATION

12.1 Typhoon Data Audit

The realization of the Technical Report is supported by a detailed review of channel sampling works done by Typhoon in 2003, 2004, 2007 and 2008. A similar methodology was used for all works produced in these yearly programs. Sample orientation varies in function of the dominant orientation of veins and mineralized structures.

Current channel samples database includes 761 samples with coordinates entries validated and paired with assays certificates and Autocad drawing showing channel samples numbers. Channel position were generally obtained by chaining distances on stripped surface using a reference point. Once transferred in CAD format, the entire drawing including channel positions became georeferenced. As detailed on table 12.1, 34 channel samples, with assays results remain to be paired with a location corresponding to appropriate coordinates. 194 grab samples and undefined samples with results supported by assays certificates were obtained from 2003, 2004 and 2007 phases. From that, 8 samples can be located appropriately and the location of 186 samples remains to be established.

Assays procedures can be identified in 2003, 2004, 2007, 2008 and 2012 exploration and Technical Reports issued by Typhoon. The author can rule on the validity of the sampling and assaying procedures based on following arguments: the detailed examination of the field environment and core storage facility and the consistency of assays results coming from the same environment.

MONEXCO SAMPLING	2008	2007	2004	2003	Total
Channel samples positionned on the UTM grid with gold results.	410	171	156	24	761
Channel samples Unpositioned Results	0	0	34	0	34
Total	410	171	190	24	795
Grab or undefined samples positionned on the UTM grid with gold results.	0	0	8	0	8
Grab or undefined samples unpositioned Results	0	94	20	72	186
Total	0	94	28	72	194

TABLE 35 : MONEXCO ASSAYS RESULTS COMPILATION FROM 2003, 2004, 2007 AND 2008.

12.1.0 2003 Channel and grab sampling

24 channel samples and 72 grab samples were taken on existing stripping zone and assayed for gold by Bourlamaque Assay Laboratories LTD (Val d'Or, Quebec). Channel sampling used varied orientation to cross cut veins at a right angle. Field works, including samples security, sampling and assaying approaches and methods, as reporting, were under the supervision of Daniel Gaudreault Ing.

According to report: "Exploration Typhon, Rapport Technique d'évaluation des propriétés McCorkill et Monexco, Gaudreault D., 2003", a detection limit of 0.1 g/t gold was obtained from a fire assay technique. Samples that returned first results above 1,000 ppb were re processed to obtain a second result delivered in g/t. A preparation duplicate was randomly generated by the lab for each certificate as pulp duplicates to represent about 10% of the samples chain. A blank and a standard sample were inserted for each certificate.

This procedure aimed to test the homogeneity of gold in a sample. Also, the pulp from 14 samples were reprocessed by metallic sieve to test the impact of a potential nugget effect.

Assaying for silver with a 1.0 g/t cut off was performed on all samples. copper and zinc were assayed on 44 samples with a detection limit of 5 ppm for both elements. The analytical method combined a multi-acid digestion with lectures by atomic absorption spectrometry.

12.1.1 2004 Channel and grab sampling, drilling

The program was based on 218 sampling results coming from channel and grab sampling or chip sampling assayed for gold, or gold and silver, or gold and multiple elements. The gold results list includes also 10 samples obtained from the short hole MO-04-01. This hole was drilled to evaluate the thickness of the Monexco No.1 gold bearing system. A certain number of 2003 sampling stations were revisited and re sampled. All assaying works was performed by ALS Chemex Canada Ltd.

The emphasis of sampling works was put on four stripping areas: Monexco No.1 No.2, No.3 as the NW stripping located immediately west of the Rivière France bank. Works were also extended outside main stripping areas to the geophysics grid covering both Monexco and McCorkill properties. The McCorkill stripping was also covered by channel and grab sampling.

Field work, samples security, sampling and assaying methods and approaches, as reporting, were under the supervision of Luc Rioux P.Geo.. All relevant information figure in « Exploration Typhon Inc., Rapport de travaux d'exploration 2004, propriété McCorkill et Monexco, camp minier de Chibougamau, province de Québec ». All samples were processed by fire assay for gold assays. 24 samples were also assayed for silver in combination with gold. A multi-elements analysis using a multi-acid extraction and a ICP-MS (Induced Coupled Plasma - Mass Spectrometry) detection was made on samples series representing 105 samples.

Position of 156 channels samples located on individual stripping were retrieved and transferred on a georeferenced format. Location of 34 channel samples and 20 grab samples could not be established.

12.1.2 2004 Drilling

4 holes were implanted on the project local grid. Drill emplacement at the eastern limit of the Monexco No.1 stripping was observed during 2016 site visits. Basic information concerning georeferenced holes location and drill parameters were transferred in an Access database allowing an easy access and integration.

The core and assaying rejects are stored and maintained at the company facility located in the Mont-Brun district, about 30 km North of the town of Rouyn-Noranda. The Author can certify that drill holes are still available for verification excepting MO-04-01 which was for most sections integrally sampled.

Certificates for 204 samples were produced in report: « Exploration Typhon, campagne de sondage 2004, propriété Monexco, camp minier de Chibougamau. Hammouche H., et al., 2005 ».

12.2.3 2007 Sampling

Results from 265 samples were submitted in report “Exploration Typhon, Rapport Technique de la propriété Monexco” by Robert Gagnon P.Geo.. 171 samples noted as channel are part of a georeferenced table, and 94 results are related to samples located on plans. Channel samples were all taken perpendicularly to gold bearing structures or to the main fabric with length varying between 0.5 and 1.5 m. All samples were assayed for a wide spectrum of elements using a multi-acid digestion and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) technique.

12.2.4 2008 Sampling

The report « Exploration Typhon, rapport technique NI43-101 de la propriété Monexco, Beauregard, A.J., et al., 2008 » submitted 410 channel samples located on the UTM grid and draw on stripping areas plans. Channel position are attached to the drawing and subject to move depending on surveying.

Rock samples were processed by Accurassay Laboratories. 31 duplicates were generated in the sample chain, which represent one sample at each 10 samples. Any detail was given about this sampling procedure.

12.1.5 2011 Drilling

The core and assaying rejects are stored and maintained at the company facility located at Mont-Brun district, about 30 km North of the town of Rouyn-Noranda. The author certifies that drill holes are still available for verification. 2016 field works allowed to visit drill holes emplacement and control drilling orientation. Tubing of 2011 holes was left in place and an embossed aluminum cap indicates hole number.

Certificates for 787 samples were reported. The laboratory procedure is detailed in: « Exploration Typhon, rapport technique des travaux de forage 2011 sur la propriété Monexco, Beauregard A.J. et al., 2012 ».

12.2 2015-2016 Quality Control

Any standard nor blank were inserted across the samples chain in the 2015-2016 programs context. ALS Chemex lab procedure includes insertion of blanks, standards and the regular re-assaying of samples.

From a population of 627 samples assayed in 2016, ALS processed 54 blank samples which returned any gold values. The frequency is about 1 blank after 10 samples.

29 lab random fire assay duplicates were generated for a frequency of one duplicate at each 20 to 22 samples. From that, only 7 falls on gold values above 0.05 g/t by giving variations between 4 and 72%. Higher numbers corresponding to values above 10 g/t gold. The number of data is not sufficient to represent a basis for comparison.

Samples density obtained on the field compensate for the lower level of quality control done on the laboratory results chain. As mentioned on section 12.1, 761 positioned channel samples were taken over years on stripped area, which represents an average density close to 1 sample per m^2 . During 2015 and 2016, grab or composite samples were repeated at close range generating field duplicates. A cluster of similar results obtained in a same area offers a confidence level on the gold distribution pattern, and indirectly on the assaying procedure.

This auto-validation process is not standard and sufficient but constitutes a reasonable way to guarantee at the actual level of information the reliability of gold results presented in this report.

13. MINERAL PROCESSING AND METALLURGICAL TESTING

A Knelson granvimetric concentrator test was performed on a 25 kg sample extracted from the Monexco No.1 stripping. The quartz vein composite sample was made from a blasting operation prepared close to the eastern extremity of the existing stripping. The material was processed by Laboratoire LTM inc. during 2007 (St-Jean, E., 2007).

The sample was reduced and totally pulverized in a close circuit down to 20 meshes (0.8 mm). The dry sample was first processed through the Knelson concentrator. The sample was passed a second time through the circuit by using a 35% solid pulp. A Knelson KC-MD3 was used for this test.

The first concentrate represented 0.39% of the weight feed with a grade of 25,539.23 g/t gold for a recovery rate of 79.3%. The second stage concentration represented 0.03% in weight with a grade of 2,165.7 g/t gold for a recovery of 0.5%. The combined concentrate after two stages gave a grade of 23,845.86 g/t gold which is enough to be poured in dore. Results obtained showed that the first circuit recovered all the recoverable gold at the grinding granulometry of 20 meshes. Only additional grinding passing a smaller mesh could improve the recovery rate (St-Jean E., 2007).

14. MINERAL RESSOURCES ESTIMATES

The level of information coming from drilling information with 11 holes is not sufficient to perform any resources estimate.

16.0 TO 22.0 ADDITIONAL REQUIREMENTS FOR ADVANCED PROPERTIES

The Monexco property is at the transition between the grassroot exploration stage and the drilling stage. Following items concerning the predevelopment are not pertinent in this frame: Mining methods (16.0), Milling and Recovery (17.0), Project infrastructures (18.0), Market Studies and Contracts (19.0), Environmental Studies, Permitting and Social Community Impact, Capital and Operating Costs (21.0), Economic Analysis (22.0).

23. ADJACENT PROPERTIES

The Monexco property is surrounded by claims except for the Lac France area on the northern side. Three designated cells (CDC) at the requesting stage on the Gestim claims management system (<https://gestim.mines.gouv.qc.ca>, December 2017 situation), touch the property southwestern side (see figure 23.1). Nunavik Nickel, by controlling 10 titles north-west of Monexco, is the only active public company neighboring Typhoon. Five private companies are currently active on claims blocks sharing at least one limit with the Monexco property.

Geo-Envirofor Inc. covered in 2015-2016 the Pamac polymetallic showing located 200 m east of the Monexco property. The Pamac trench was resampled with 18 on meter long channel samples. The best result obtained was 1.9 % zinc over 0.7 m with traces of silver. These values are located inside a 2 -3 m wide north-east striking shear zone (Turcotte D., 2015). In this context, east-west sulfides rich metric lenses are parts of tuffaceous felsic tuffs of the Blondeau Formation and cut by the north-east Lac Mary or Duquette Nord Fault. A VLF and Beep Mat survey identified a series of 5 satellite conductors. Stripping and sampling done in 2016 obtained silver-lead-tellurium anomalies from pyrite-pyrrhotite lenses (Turcotte D., 2016).

The "Kill Bill" property worked by Les Ressources Tectonic Inc. is composed of 32 claims located south of the Monexco property. It includes large section of the Cummings sills complex, injected in the Gilman-Blondeau sequence. The follow up on 8 splayed VLF anomalies returned massive sulfides layers with thickness between 0.15 and 0.4 meters embedded in sheared felsic. 10 Channel samples returned significant results along 900 m long conductor. The best result of 2.5% copper, 2% zinc, 27 g/t silver, 0.28 g/t gold over 0.4 meter corresponds to the UMA showing (Laforest J., 2015). The company also uncovered the similar Icon polymetallic showing located along strike 3km westward.

The icon showing area is split in two trenches initially open during the sixties on a 200 m long VLF conductor. The main trench showed a massive sulfides lens making 0.2 to 1.3 meters hosted in a rhyolitic tuff over an average width of 3.6 m. Average grade and thickness obtained by channel sampling along 25 meters of strike length was 1.4% Cu, 8.1% Zn, 51.5 g/t Ag and 0.27 g/t Au over 0.8 m. (Laforest, 2013).

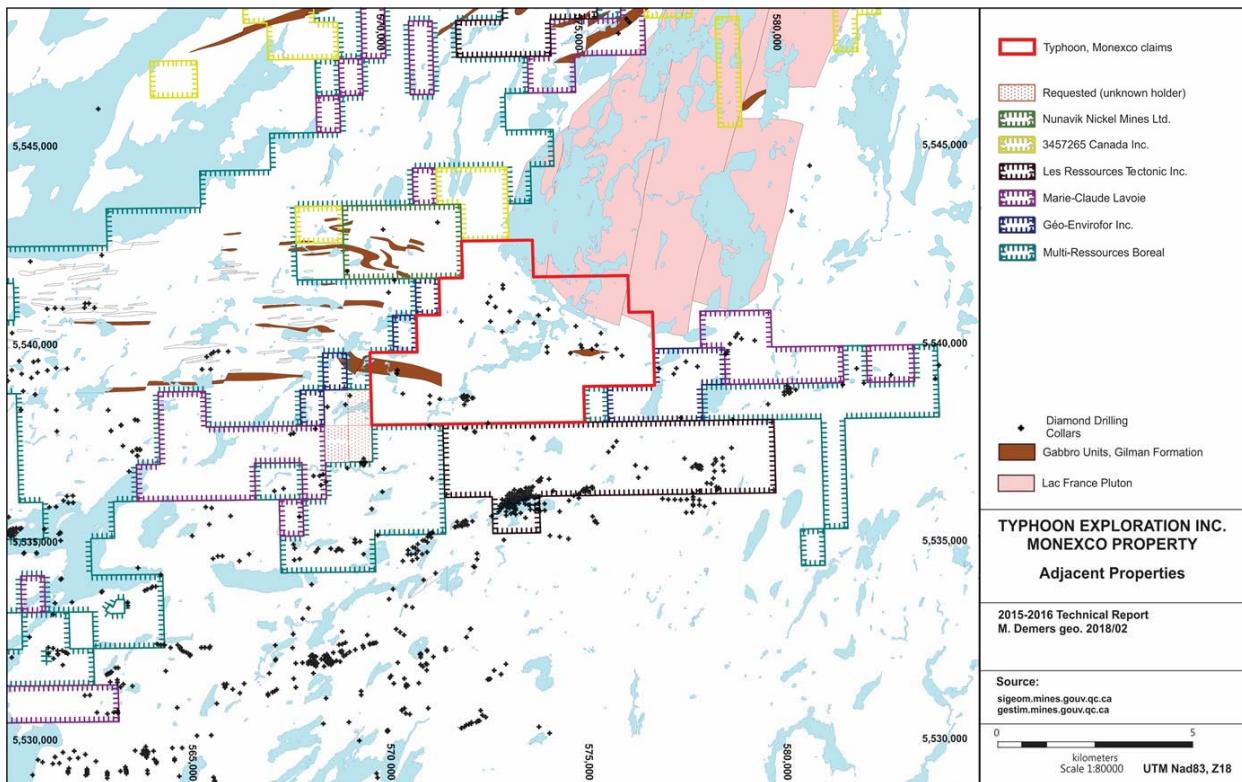


FIGURE 44 : ADJACENT CLAIMS BLOCKS TO THE MONEXCO PROPERTY. DECEMBER 2017 SITUATION.
SOURCE: SIGEOM.MINES.GOUV.QC.CA

PROJECT	Kill Bill		
YEAR	OWNER	Nature of works	Reference
2015	Les Ressources Tectonic Inc.	Mechanical stripping on VLF conductors. Best result: 2.5% Cu, 2% Zn, 27 g/t Ag, 0.28 g/t Au (Ima showing).	GM-68941
2015	Les Ressources Tectonic Inc.	Ground VLF survey: 4.85 km grid at 100 m spacing.	GM-69438
2013	Les Ressources Tectonic Inc.	Trench cleaning and channel sampling (31 samples). Average from trench #1: 1.4% Cu, 8.1% Zn, 0.2% Pb, 51.5 g/t Ag, 0.27 g/t Au over 0.8 m.	GM-68941

PROJECT	Marys` s Lake		
YEAR	OWNER	Nature of works	Reference
2016	Geo-Envirofor Inc.	Mechanical Stripping on VLF conductors corresponding to pyrite-pyrrhotite lenses. Ag	GM-69563

		(1-4 g/t), Pb (100 ppm), Te (10-30 ppm) signature.	
2015	Geo-Envirofor Inc.	Blasting of five trenches at right angle to the initial Pamas trench. Best result from 18 channel samples: 1.9 % Zn over 0.7m.	GM-69303
2015	Geo-Envirofor Inc.	VLF survey: 6.7 km, 100 m spacing	GM-69302

TABLE 36 : RECENT EXPLORATION WORKS DONE ON CLAIMS BLOCKS ADJACENT TO THE MONEXCO PROPERTY.
SOURCE: SIGEOM.MINES.GOUV.QC.CA

24.0 OTHER RELEVANT DATA AND INFORMATION

All relevant data and information have been disclosed.

25.0 INTERPRETATION AND CONCLUSIONS

The chip sampling done in 2015-2016 was executed to better define high grade trends on four (4) large stripping areas of the Monexco gold system. Results are distributed over a 400 m long trend mostly extending east of Rivière France. Following interpretation gives a 400 meters north-south influence with four parallel quartz-feldspathic porphyry dykes swarms.

At a few dozen meters scale, gold shoots are mostly located where north-east (N040 to N065) east dipping fractures and minor faults intersect quartzo-feldspathic porphyry dykes. On Monexco No.1, No.2, VG, Molly 1, Molly 2, Montagne, Rivière Nord stripped areas, these high grades trends could be extrapolated along strike outside actual stripped contours.

New significant gold values were also obtained about 60 m north of the Rivière Nord stripping in the same context as the main Monexco trend. The cluster of three values of 9.0 g/t, 3 g/t, and 2 g/t gold are associated with a quartzo-feldspathic dyke. Laterally, this gold signal can not be correlated to any other known trend east of Rivière France. The Molly trend located around 150 m northward otherwise represents at that stage the northern limit of the Monexco gold system. When considered at the property scale, this limit is at the same northing as the Soquem I-88-05 (6.9 g/t over 1m) diamond drill hole located 2.4 km westward.

This northern Monexco trend highlights the difficulty to circumscribe the extension of the gold system based only on the prospecting and trenching works. The density of outcrops decreases abruptly outside the Rivière France valley. The boulder sampling started in 2016 has been of a great support to track potential gold structures.

The northern half of the property remains poorly exposed. Rhyolite and tuffaceous units associated with sediments are all marker of the Blondeau Formation, also well known to host a polymetallic sulfides potential. The gold showing identified around 500 m north of the initial Monexco trend (3.53 g/t from sample N172211) is hosted in a massive pyrite lense similar to the description of the Pamac zone located about 4.5 km eastward in the same environment (Turcotte D., 2015).

In terms of methodology, the increasing sampling density on stripping areas has reached about 1 sample per square meter. The sampling file is composed of 1,578 samples split roughly in half between chip and channel samples. The combination of the two populations gives a cohesive gold distribution on map. It is to be noted that channel samples do not form continuous chains and they can be considered as punctual samples. Drill tests were done on Monexco No.1 and VG using north-south or north-west trending drilling azimuths generally without reproducing gold values obtained at surface. On the other hand, holes MO-11-04 and MO-11-05 have intersected noticeable results that can influence our understanding of the Monexco gold system. In that case, the repetition of gold intervals in the 0.3 to 4.7 g/t range can be interpreted as a wide north-east striking low grade envelope hosts in the maximum thickness and complexities of the dykes swarm intercepted by drilling.

This result is significant and could indicate the potential for a large volume low grade deposit related to quartzo-feldspathic dykes swarms. Current sampling coverage still indicates that north-east striking veins are an important gold enrichment vectors. Parallels can be drawn to support this assessment between Monexco and the Gwillim Mine located a few km north of Chibougamau.

According to this model, Monexco higher grade shoots could follow in plan view a similar staggered pattern in function of quartzo-feldspathic dykes and north-east faults intersections. The progression of the gold system controlled by the Rivière France north-east trend represents the property main exploration upside.

The data investigation produced within this report can be used to illustrate the wide range of geophysical surveys that covered the property over years. At surface, successive prospecting and sampling programs have exploited all outcrops possibilities. At this stage of the exploration process, drilling targets can be generated by compiling existing information. The program objectives should be: investigating the potential for a large volume low grade deposit and testing local enrichment along north-east faults pattern.

26.0 RECOMMANDATIONS

The data investigation produced in the frame of the Technical Report illustrated the completion of a wide range of geophysical surveys. At surface, successive prospecting and sampling programs have exploited all outcrops possibilities. At the end of this 60 years process, the exploration issue becomes to interconnect varied types of information in a targeting process with the objective to drill them.

The exploration model developed for the Monexco gold system lead to a four steps strategy:

1. Creating a project database and GIS platform. Assays results are currently compiled using multiple MS Excel sheets. A database format is the only way to guarantee data safety and reliability through the data addition and transfer process. Data interaction in a GIS (Geographic Information System) could be used to improve known targets and identify new sectors of interest.
2. Interpretation of altered quartzo feldspathic porphyry dykes swarm and associated structures based on actual geological mapping and geophysics. This geological context can be used to delineate targets at a few hundred meters scale.
3. Identification of north-east lateral detachment faults and associated iron carbonate alteration is a further step towards the identification of drilling targets. The use of EM and magnetic data by appropriate processing can highlight signal breaks and intensity variations correlatable with geological information.
4. Structural map rebuilding using a detailed structural analysis focusing on kinematic indicators and strain orientation. This field technique is a robust tool to direct the search for gold zones by drilling.

The proposal is built on 5,000 m of drilling split in 16 holes targeting the Monexco gold showing area. Achieving the objective will require a few preparatory steps.

- Surveying quartzo-feldspathic porphyry dykes positions and stripping outlines to detect slight shift of orientation that may correspond to north-east detachments faults. Relative position of channel samples and geological contacts are accurate on each stripping, but field works absolute position remain to be adjusted by surveying to reach a precision inside 1 meter.
- At the property scale, there is no geological base map available. Unfortunately, property's gold targets are located at the intersection of four NTS sheets located at the eastern limit of the Chibougamau geological region. Confusing contacts and unsolved

stratigraphy put a burden on the Monexco targets robustness. It is recommended to propose a clearer interpretation base on the integration of historical data.

- The size of the gold system footprint associated with Monexco showings might be understood and presented using the integration of recent as historical geophysical data. Also, anomalous values scattered across the property, outside the influence of Monexco showings may be used to track the gold system. New targets could be generated at a more broader scale where Riviere France corridor and lineament interact with the Faribault Fault. Gold values obtained on the McCorkill stripping (Sigeom Riviere France Est) is a sign of this.
- The unique phase of drilling includes enough holes to cover with minimal overlap the 300 to 400 m possible north-south section of the altered dykes swarm corridor. Objectives of the 5,000 m drilling program is to test the potential for a large volume low grade deposit, and local enrichment along north-east minor faults. The ideal drill azimuth should be at N310 degrees to intersect north-east of north to north-east fractures sets hosting gold bearing alteration system thickening.
- Logistically, the program should be supervised on the field to be able to re-orient quickly drill objective in function of observations. The budget model proposed is based on a core return at the Company`s base located in the Rouyn-Noranda area to complete the core logging and sampling. Transportation cost evaluated at \$10/m is more economic for a first phase than absorbing additional location and logistical cost close to the project. An overall cost of \$176/m is evaluated for the whole program split between contractor cost (\$100/m), logistics (\$38/m) assaying (\$20/m) and human resources (\$20/m).
- The entire evaluation program cost is evaluated at \$937,000 from targeting works to reporting.

Table 1

MONEXCO DRILLING PROPOSAL	Unit	Unit cost	Qty	Total	Details
Target modelling	Day	\$ 500	20	\$ 10,000	Data assemblage on a unique platform (geology, geophysics, drilling)
Program preparation	Day	\$ 750	10	\$ 7,500	Logistic and physical organization
Drilling Program	m	\$ 176	5000	\$ 890,000	5,000 metres split in 16 holes
Drafting and Reporting, 43101 report update and assessment	Day	\$ 500	60	\$ 30,000	43-101 Technical Report update and assessments
TOTAL				\$ 937,500	

Table 2

Drilling Program Items		Unit cost	Qty	Total	
Surveying	m	\$ 2	5000	\$ 10,000	Targets location
Drilling contractor	m	\$ 100	5000	\$ 500,000	Split in 16 holes averaging 312 metres
Access preparation	m	\$ 10	5000	\$ 50,000	Access construction
Assaying	m	\$ 20	5000	\$ 100,000	About 80% core length assayed
Transport	m	\$ 10	5000	\$ 50,000	Core transportation from field to Typhoon Mont-Brun base
Field Logistic	m	\$ 6	5000	\$ 30,000	Room and Board
Human Resources	m	\$ 20	5000	\$ 100,000	Geologist, technician, helpers
Material Location	m	\$ 10	5000	\$ 50,000	Based on 2 months operation
TOTAL		\$ 178	5000	\$ 890,000	

TABLE 37 : MONEXCO PROPERTY RECOMMENDATIONS AND BUDGET PLAN.

27. REFERENCES

27.1 Authors references

Agreement Concerning a New Relationship (Paix des Braves) between Le Gouvernement du Québec and The Crees of Québec, 2002.

Beauregard A.J., Gaudreault D., 2012. Rapport technique des travaux de forage 2011 sur la propriété Monexco, cantons McCorkill et Bignell, région de Chibougamau Québec, (32G16, 32H13, 32I04, 32J01). GM-67476.

Beauregard A.J., Gaudreault D., 2008. Rapport technique NI-43-101 de la propriété Monexco, cantons McCorkill, région de Chibougamau Québec (32G16, 32H13, 32I04, 32J01), 38p. GM-64620.

Beauregard A.J., Gaudreault D., 2003. Rapport de compilation et visite de terrain, propriétés McCorkill et Monexco, camp minier de Chibougamau (SNRC 32H13, 32I04, 32J01). 29p. GM-60607.

Boileau P., 2003. Levés Géophysiques (Magnétique et PP-résistivité) effectué le projet McCorkill, Municipalité de la Baie James (32I04), Québec, pour Typhoon Exploration inc. GM-60609.

Boileau P., 2004. Levés Géophysiques (Magnétique et PP-résistivité) effectué le projet Monexco, canton McCorkill, Municipalité de la Baie James (32I04), Québec, pour Typhoon Exploration inc. GM-60608.

Bouchard G., 1986. Environnement géologique du gisement aurifère de Gwillim, Chibougamau, Quebec. UQAC, Master`s Thesis.

Bouchard G., Guha J., Zucherkandel W., 1984. The Gwillim Gold Mine and its Geological Setting, in Chibougamau stratigraphy and mineralization, CIM Special Volume 34,

Daigneault R., Allard G.O., 1990. Le complexe du Lac Doré et son environnement géologique (Région de Chibougamau, Sous-Province de l'Abitibi. 166p., MM89-03.

D'Amours I., Geophysics GPR International Inc., 2008. Helicopter Borne Magnetic, Gamma Ray Spectrometry and VLF Geophysical Survey, Chibougamau Area, Québec. Data Acquisition Report Monexco Project, 20p. GM-64527.

De Chavigny P., Gaucher E., 1984. Rapport synthèse, propriété minière groupe McCorkill. 15p. GM-43302.

Dubé B., Gosselin P., 2007. Greenstone-hosted quartz-carbonate vein deposits, in Goodfellow W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposits-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, p.49-73.

Gagnon, R., 2007. Rapport technique 43-101 de la propriété Monexco, canton McCorkill, Chibougamau, Québec, SNRC 32G16, 32H13, 32I04, 32J01, Exploration Typhon. 36p.

Gaudreault D., 2003. Rapport technique d'évaluation des propriété McCorkill et Monexco. Cantons McCorkill, Chibougamau, Québec. 31p.

Gerardin V., McKinney, 2001. Une classification climatique du Québec a partir de modèles de distribution spatiale de données climatiques mensuelles : vers une définition des bioclimats du Québec. Contribution du service de la cartographie écologique No. 60.

Girard R., 2006. Levé de géochimie de l'Humus dans le secteur de la rivière France, Chibougamau. 32 p. IOS Services Géoscientifiques Inc., présenté à Exploration Typhon Inc.

Harris J.J., 1956. Report on A Group of Claims in McCorkill township, Chibougamau Area of Quebec. Bignell Mines Ltd., Defor Chibougamau Mines Ltd., 10p. GM-04944.

Houle P., Roy P., Turcotte S., 2003. Compilation des indices aurifères de l'extrême Est de la Sous-Province de l'Abitibi, région de Chibougamau (SNRC 32G), MERN; DV2003-08.

Laforest J., 2015. Rapport de travaux de décapage 2014, propriété Kill Bill, NTS 32H13, canton McCorkill., 13p. GM-68941.

Laforest J., 2013. Rapport de travaux de décapage, propriété Kill Bill, NTS 32H13, canton McCorkill, 15p. GM-67509.

Leclerc F., 2011. Géochimie et context tectonique du Groupe de Roy et complexe de Cummings dans la région de Chibougamau, Québec. INRS, 237p.

Masterman P.C., 1986. Golden Horse Resources Inc., Report on a Max-Min Electromagnetic Survey McCobi Property. McCorkill Township, Chibougamau District, Quebec. 10 p., GM-43634.

Ogden M., De Montigny P.A., 1956. Geological Survey., Windward Gold Mines Ltd., McCorkill Township Property, Quebec, 12p. GM-10133.

Picard, M., 1981. Prospection géochimique pour l'or dans les sols organiques et les minéraux lourds de cours d'eau et de till. Projet Monexco : 301-1381-26, 13p., GM-39234.

Pilote P., 1998. Géologie et métallogénie du district minier de Chapais-Chibougamau, nouvelle vision du potentiel de découverte. Ed. P. Pilote. 163p., DV 98-03.

Pollock F.W., 1977. Airborne Electromagnetic Survey, Campbell Chibougamau Mines Ltd., Waconichi Lake Area, Quebec, 55p. GM-69650.

Pudifin A.D., 1959. Geological Report on McCorkill Township Group, Obalski (1945) Ltd., 7p. GM-10133.

Rioux L., Hammouche H., 2005. Campagne de sondage 2004, propriété Monexco, camp minier de Chibougamau, SNRC 32G16, 32H13, 32I04 et 32J01, province de Québec. Rapport interne Ressources Lutsvisky Inc., 16p.

Rioux L., 2004. Rapport de travaux d'exploration 2004, propriété McCorkill et Monexco, camp minier de Chibougamau, province de Québec. GM-61589.

Rioux L., 2003. Rapport de travaux d'exploration 2003, McCorkill et Monexco, camp minier de Chibougamau, province de Québec. Rapport interne, Ressources Lutsvisky Inc.

Salamis C., 1988. Geological Report on the Property of Mastergroup Mining Exploration Corp. (Société d'exploration minière Mastergroup), McCorkill Township, Chibougamau District. 12p., GM47207.

Salamis C., 1974. Geophysical Surveys on the property of Monexco Resources Ltd., McCorkill township, Chibougamau district, 11p., GM30147.

St-Jean E., 2007 in Guillemette F., 2007. Propriété Monexco, travaux été 2006, Dynamitage et test de récupération de l'or sur un échantillon de 25 kg provenant du décapage numéro 1. Rapport interne soumis à Ressources Lutsvisky Inc.

St-Laurent D., Guimont P., 1999. Dynamique fluviale et évolution des berges du cours inférieur des rivières Nottaway, Broadback et de Rupert, en Jamésie (Québec). Géographie physique et Quaternaires, vol. 53, no 3, p. 389-399.

Turcotte D., 2016. Travaux d'exploration, été 2015, propriété Mary's Lake, 10p., GM69563.

Turcotte D., 2015. Rapport des travaux de rainurage de l'indice Pamac, 11p., GM69303.

Vézina C., Tremblay A., Leclerc F., Daoudene Y., 2016. Analyse structurale de la zone de cisaillement de la Rivière France et de ses minéralisations. Rapport interne.

Violet B.M., 2005. Rapport sur le potentiel en or et métaux de base, propriétés McCorkill et Monexco, camp minier de Chibougamau (SNRC 32H13, 32I04, 32J01). Exploration Typhon Inc., 57p.

Violet B.M., 2002. Rapport technique d'évaluation, propriétés McCorkill et Monexco, camp minier de Chibougamau (SNRC 32H13, 32I04, 32J01). Black Riverside Venture Capital Inc., 27p.

27.2 Web sites references

<https://gestim.mines.gouv.qc.ca>

<https://apps.creegeoportal.ca>

www.mffp.gouv.qc.ca

http://www.mddelcc.gouv.qc.ca/publications/lois_reglem.htm

http://www.mddelcc.gouv.qc.ca/biodiversite/aires_protegees/provinces/conclusion.htm

<http://www.eeyouconservation.com/broadback-watershed-conservation-plan.html>

<http://climat.meteo.gc.ca>

27.3 Assessment Reports Listing

GM 69650 AIRBORNE ELECTROMAGNETIC SURVEY, WACONICHI LAKE AREA, CAMPBELL CHIBOUGAMAU MINES LTD., 1977. 55 pages, 2 plans.

GM 67745 HELICOPTER-BORNE MAGNETIC, GAMMA-RAY SPECTROMETRY AND VLF GEOPHYSICAL SURVEY, CHIBOUGAMAU AREA, QUÉBEC, NTS MAP SHEETS 32J01, 32I04, 32G16, 32H13, DATA ACQUISITION REPORT, MONEXCO PROJECT, LUTSVISKY RESOURCES INC., 2008. 41 pages, 10 plans.

GM 67476 RAPPORT TECHNIQUE DES TRAVAUX DE FORAGE 2011 SUR LA PROPRIÉTÉ MONEXCO, CANTON MC CORKILL ET BIGNELL, REGION DE CHIBOUGAMAU, QUEBEC, 32G16, 32H13, 32I04, 32J01, 2012. 119 pages, 6 plans.

GM 64620 EXPLORATION TYPHON INC., RAPPORT TECHNIQUE NI 43-101 DE LA PROPRIÉTÉ MONEXCO, CANTON MCCORKILL, CHIBOUGAMAU, QUÉBEC, SNRC 32G16, 32H13, 32I04, 32J01, 2008. 107 pages.

GM 64619 RAPPORT D'UN LEVÉ DE POLARISATION PROVOQUÉE EFFECTUÉ SUR LA PROPRIÉTÉ MONEXCO, CANTON MCCORKILL, 32I04, RESSOURCES LUTSVISKY, 2008. 12 pages, 29 plans.

GM 62400 LEVÉS DE MAGNÉTOMÉTRIE CHAMP TOTAL ET DE POLARISATION PROVOQUÉE, PROPRIÉTÉ MONEXCO, CANTON MC CORKILL, MUNICIPALITÉ DE LA BAIE JAMES, RAPPORT SOMMAIRE SUR DES TRAVAUX GÉOPHYSIQUES AU SOL, EXPLORATION TYPHON INC., 2004. 15 pages, 31 plans.

GM 62399 INTERPRÉTATION LITHOSTRUCTURALE, PROPRIÉTÉ MONEXCO, TERRITOIRE DE LA BAIE JAMES, QUÉBEC, CANADA. EXPLORATION TYPHON INC., 2004. 11 pages, 4 plans.

GM 62398 CAMPAGNE DE SONDAGE 2004, PROPRIÉTÉ MONEXCO, CAMP MINIER DE CHIBOUGAMAU, CAMP MINIER DE CHIBOUGAMAU, PROVINCE DE QUÉBEC. EXPLORATION TYPHON. 2005. 16 pages. 12 plans.

GM 61589 RAPPORT DE TRAVAUX D'EXPLORATION 2004, PROPRIÉTÉS MCCORKILL ET MONEXCO, CAMP MINIER DE CHIBOUGAMAU, SNRC 32G16, 32H13, 32I04, 32J01, EXPLORATION TYPHON INC., 2004. 68 pages, 6 plans.

GM 61428 RAPPORT DE TRAVAUX D'EXPLORATION 2003, PROPRIÉTÉ MCCORKILL ET MONEXCO, CAMP MINIER DE CHIBOUGAMAU, SNRC 32G16, 32H13, 32I04, 32J01, 2005., 47 pages, 4 plans.

GM 57672 SUMMARY OF DIAMOND DRILL PROGRAM IN THE NORTHWEST BASE METAL SECTION OF THE MC CORKILL TOWNSHIP PROPERTY, CHIBOUGAMAU MINING DISTRICT, 1975. 26 pages.

GM 56555 RAPPORT TECHNIQUE ET DE COMPILATION GEOSCIENTIFIQUE, PROPRIETE MONEXCO. SOCIETE DE DEVELOPPEMENT DE LA BAIE JAMES. 1999. 26 pages. 2 plans.

GM 56554 LEVE BEEP MAT ET LEVE GEOLOGIQUE, PROPRIETE MONEXCO. SOCIETE DE DEVELOPPEMENT DE LA BAIE JAMES. 1999. 29 pages. 2 plans.

GM 51530 LEVÉS GÉOPHYSIQUES, PROPRIÉTÉ DE SOQUEM, PROJET France #101037, COMTÉ UNGAVA, PROVINCE DE QUÉBEC, SOQUEM, 1992. 11 pages, 24 plans.

GM 51026 RAPPORT PRÉLIMINAIRE SUR UN LEVÉ ÉLECTROMAGNÉTIQUE, CANTON MC CORKILL, QUÉBEC, MASTERGROUP MINING EXPLORATION CO. LTD., 1991. 6 pages, 4 plans.

GM 51025 REPORT OF THE MINING PROPERTY OF MASTERGROUP MINING EXPLORATION CO. LTD. AND PAUL SHALLER IN TRUST IN MC CORKILL AND BIGNELL TOWNSHIP, CHIBOUGAMAU AREA, 1990. 24 pages, 9 plans.

GM 50766 REPORT ON 1981 EXPLORATION PROGRAMME: GEOLOGY, MAGNETIC, ELECTROMAGNETIC (V L F), INDUCED POLARIZATION AND GEOCHEMICAL (SOIL) BIOGEOCHEMICAL (LEAF) SURVEYS, CHIBOUGAMAU AREA. CORPORATION AUCHIB INC, SDBJ. 1981. 60 pages. 9 plans.

GM 50452 REPORT OF THE MINING PROPERTY OF MASTERGROUP MINING EXPLORATION CO. LTD. AND PAUL SHALLER IN TRUST IN MC CORKILL AND BIGNELL TOWNSHIP, CHIBOUGAMAU AREA, 1990. 21 pages, 10 plans.

GM 50200 PROJET FRANCE (101037) RAPPORT DE SYNTHÈSE, CANTONS ROY ET MC CORKILL, SNRC 32G16, 32H13, 32I04, 32J01, VOL. 1 TO 3, 1990. 343 pages, 14 plans.

GM 49751 CAMPAGNE D'EXPLORATION, PROJET FRANCE 101037. SOQUEM. 1989. 741 pages. 33 plans.

GM 49133 LEVÉ COMBINÉ MAGNÉTOMÉTRIQUE - ELECTROMAGNÉTIQUE TBF, PROPRIÉTÉ France, CANTONS ROY ET MC CORKILL, PROJET France #101037, SOQUEM, 1989. 10 pages, 9 plans.

GM 48883 REPORT ON COMBINED HELICOPTER BORNE AIRBORNE ELECTROMAGNETIC, MAGNETIC, AND VLF-EM SURVEY, CHIBOUGAMAU AREA, QUEBEC. MASTERGROUP, 1989. 61 pages, 7 plans.

GM 49675 3 DRILL LOGS, MASTERGROUP MINING EXPLORATION LTD., 1990. 10 pages.

GM 49673 PRELIMINARY REPORT ON A MAX-MIN SURVEY, MASTERGROUP MINING EXPLORATION CO. LTD., 1990. 1 pages, 2 plans.

GM 48432 REPORT ON COMBINED HELICOPTER BORNE AIRBORNE ELECTROMAGNETIC, MAGNETIC, AND VLF-EM SURVEY, CHIBOUGAMAU AREA, QUEBEC. PAUL SCHALLER IN TRUST, 1989. 53 pages, 11 plans.

GM 48298 CAMPAGNE D'EXPLORATION PROJET FRANCE 101037, SOQUEM, 1988. 195 pages, 15 plans.

GM 47502 LEVÉ GÉOPHYSIQUE PROPRIÉTÉ SOQUEM, PROJET 101037 « France », CANTON ROY ET MC CORKILL, QUÉBEC, 1988. 11 pages, 15 plans.

GM 47207 GEOLOGICAL REPORT ON THE PROPERTY OF MASTERGROUP MINING EXPLORATION CORP., SOCIÉTÉ D'EXPLORATION MINIÈRE MASTERGROUP, 1988. 30 pages, 2 plans.

GM 45198 ASSAYS CERTIFICATES, PAUL SCHALLER IN TRUST, 1987. 9 pages.

GM 43792 ROCK SAMPLING, CLAIMS DE CHAVIGNY, PROMOTION MINIERE PAMAC LTD., 1986. 8 pages, 2 plans.

GM 43634 REPORT ON A MAX-MIN II ELECTROMAGNETIC SURVEY MC COBI PROPERTY, MC CORKILL TOWNSHIP, CHIBOUGAMAU DISTRICT, QUEBEC, 1986. 10 pages, 4 plans.

GM 41302 RAPPORT SYNTHÈSE, PROPRIÉTÉ MINIÈRE GROUPE MC CORKILL, CHAEX CLAIMS GROUP, 1983. 15 pages, 4 plans.

GM 39234 PROSPECTION GEOCHIMIQUE POUR L'OR DANS LES SOLS ORGANIQUES ET LES MINERAUX LOURDS DE COURS D'EAU ET DE TILL, PROJET MONEXCO 301-1381-26. RESSOURCES MONEXCO LTEE, S D B J. 1981. 13 pages. 4 plans.

GM 39233 RAPPORT DES LEVES GEOLOGIQUE, MAGNETIQUE ET ELECTROMAGNETIQUE (V L F & MAX MIN), PROJET MONEXCO 301-1381-26. RESSOURCES MONEXCO LTEE, SDBJ. 1981. 35 pages. 10 plans.

GM 39002 GEOLOGICAL, GEOPHYSICAL AND GEOCHEMICAL REPORT ON THE ROY/MCCORKILL PROPERTY OF CORPORATION AUCHIB INC., 1986. 36 pages, 29 plans.

GM 36005 CAMPAGNE DE SONDAGE SUR LA PROPRIÉTÉ MONEXCO RESOURCES LTD., PROJET MONEXCO, CANTON MCCORKILL, SOCIÉTÉ DE DÉVELOPPEMENT DE LA BAIE JAMES, 1979. 6 drill logs, 58 pages, 2 plans.

GM 34776 RAPPORT DES LEVES GEOLOGIQUE, MAG ET E M. MONEXCO RESOURCES LTD, S D B J. 1979. 27 pages. 3 plans.

GM 32181 GEOLOGY, MAGNETOMETRY AND HORIZONTAL LOOP SURVEY, V-105 PROPERTY, ROY TOWNSHIP, QUEBEC, PATINO MINES (QUEBEC) LTD., 1975. 22 pages, 1 plan.

GM 31210 REPORT ON GEOLOGICAL SURVEY, IDA LAKE PROPERTY, MCCORKILL TOWNSHIP, PATINO MINES (QUEBEC) LTD., 1975. 9 pages, 1 plan.

GM 31209 MAGNETOMETRY ET HORIZONTAL LOOP SURVEY, IDA LAKE PROPERTY, PATINO MINES (QUEBEC) LTD., 1975. 8 pages, 2 plans.

GM 30932 GEOPHYSICAL SURVEYS, BIGNELL TOWNSHIP, BIGNELL TOWNSHIP, CHIBOUGAMAU DISTRICT. MONEXCO RESOURCES LTD., 1975. 6 pages, 2 plans.

GM 30675 DIAMOND DRILL LOG, V-11-E PROPERTY. PATINO MINING CORP. 1974. 9 pages. 2 plans.

GM 30147 GEOPHYSICAL SURVEYS, MONEXCO RESOURCES LTD, 1974. 11 pages. 1 plan.

GM 29996 LOGS OF DIAMOND DRILL HOLES A-1, F-1, G-1, K-1, J-1, H-1, E-1, D-1 ON MONEXCO`S MCCORKILL TOWNSHIP PROPERTY, CHIBOUGAMAU MINING DISTRICT, MONEXCO RESOURCES LTD. 1974. 18 pages. 1 plan.

GM 28864 E M SURVEY. CLAIMS MANN, MONEXCO RESOURCES LTD. 1973. 33 pages. 1 plan.

GM 28004 GEOLOGY, LAC ROBERGE PROPERTY, MCCORKILL TOWNSHIP, QUEBEC, RIO TINTO CANADA EXPLORATION, 1972. 25 pages, 12 plans.

GM 15049 1 PLAN OF S P SURVEY. OBALSKI 1945 LTD. 1958. 1 plan.

GM 10134A MAG SURVEY WITH GEOL INFORMATION. OBALSKI 1945 LTD. 1960. 7 pages. 1 plan.

GM 10134B 1 PLAN OF SELF POTENTIAL SURVEY WITH GEOLOGY. CLAIMS HUSKY, CLAIMS HUTTON, CLAIMS OAKLEY, OBALSKI 1945 LTD. 1960. 1 plan.

GM 10133 GEOL REPORT. OBALSKI 1945 LTD. 1959. 7 pages. 2 plans.

GM 08807 DESCRIPTION OF CORE AND ASSAY RESULTS FROM PACKSACK DRILL HOLE #1. A.E. OAKLEY - OBALSKI (1945) LTD., HUTTON G.W. CLAIMS, 1958. 1 pages.

GM 04944 GEOLOGICAL REPORT, BIGNELL MINES, DEFOR CHIBOUGAMAU MINES LTD., 1956. 10 pages.

GM 04875 MAGNETOMETRIC SURVEY ON DEFOR CHIBOUGAMAU MINES LTD., BIGNELL TOWNSHIP, CHIBOUGAMAU DISTRICT, QUEBEC, 1956. 4 pages, 1 plan.

GM 04873 ELECTROMAGNETIC SURVEY, WESTVILLE MINES LTD., 1956. 8 pages, 1 plans.

GM 04609A REPORT ON GEOLOGICAL SURVEY. WINDWARD GOLD MINES LTD. 1956. 12 pages. 3 plans.

GM 04609B 10 DDH LOGS. WINDWARD GOLD MINES LTD. 1956. 44 pages. 2 plans.

GM 04484 E M SURVEY. WINDWARD GOLD MINES LTD. 1956. 3 pages. 2 plans.

GM 04467-A REPORT ON ELECTROMAGNETIC SURVEY, QUEEN CHIBOUGAMAU MINES LTD, 1956. 3 pages. 1 plan.

GM 04467-B 5 DDH LOGS QUEEN CHIBOUGAMAU MINES LTD, 1957. 9 pages,

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Page: 1
Nombre total de pages: 3 (A - C)
plus les pages d'annexe
Finalisée date: 9- NOV- 2015
Compte: RESLUT

CERTIFICAT VO15165450

Projet: MONEXCO

Ce rapport s'applique aux 74 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 28-OCT- 2015.

Les résultats sont transmis à:

DAVID MCDONALD

DAVID MCDONALD

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
LOG-22	Entrée échantillon - Reçu sans code barre
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
CRU-31	Granulation - 70 % <2 mm
SPL-21	Échant. fractionné - div. ruffles
PUL-31	Pulvérisé à 85 % <75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au-AA23	Au 30 g fini FA- AA
Au-GRA21	Au 30 g fini FA- GRAV
ME-ICP41	Aqua regia ICP- AES 35 éléments

À: RESSOURCES LUTSVISKY INC.
ATTN: LUTSVISKY ADMINISTRATION
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature:
Nacera Amara, Laboratory Manager, Val d'Or

CERTIFICAT D'ANALYSE VO15165450

Description échantillon	Méthode élément unités L.D.	WEI-21	ME-ICP41											
		Poids reçu kg	Ag ppm	Ag %	Al ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca ppm	Co ppm	Cr ppm	Cu ppm	Fe %
N171501	2.24	0.3	1.30	<2	<10	30	<0.5	<2	1.07	<0.5	53	23	384	6.13
N171502	1.95	0.3	2.04	2	<10	20	<0.5	3	1.33	0.8	64	37	476	10.75
N171503	2.81	0.4	1.26	<2	<10	30	<0.5	2	1.36	<0.5	37	18	611	5.04
N171504	2.47	0.2	1.56	<2	<10	60	<0.5	2	1.26	<0.5	36	23	330	6.40
N171505	1.88	0.2	1.31	<2	<10	60	<0.5	6	0.18	<0.5	56	48	450	10.30
N171506	2.83	<0.2	3.81	<2	<10	10	<0.5	3	0.65	<0.5	51	37	64	9.58
N171507	3.61	<0.2	2.82	2	<10	20	<0.5	<2	1.09	<0.5	34	19	71	6.63
N171508	2.72	<0.2	2.89	<2	<10	50	<0.5	5	1.09	<0.5	32	10	132	7.57
N171509	2.79	<0.2	0.56	<2	<10	60	<0.5	<2	0.52	<0.5	3	7	4	0.91
N171510	3.18	<0.2	3.38	<2	<10	10	<0.5	3	2.97	<0.5	35	44	71	7.11
N171511	1.71	<0.2	3.30	<2	<10	10	<0.5	2	0.22	<0.5	32	43	41	7.51
N171512	2.90	<0.2	1.09	<2	<10	40	<0.5	<2	1.63	<0.5	9	10	9	5.36
N171513	2.50	<0.2	0.77	<2	<10	40	<0.5	<2	2.84	<0.5	18	16	10	4.83
N171514	3.10	<0.2	1.19	<2	<10	30	<0.5	3	4.22	<0.5	19	14	6	8.89
N171515	3.49	<0.2	2.24	<2	<10	10	<0.5	<2	4.92	<0.5	46	41	94	6.45
N171516	2.57	<0.2	2.94	<2	<10	<10	<0.5	2	8.6	<0.5	28	97	54	4.61
N171517	3.13	<0.2	0.05	<2	<10	10	<0.5	<2	0.97	0.6	4	9	182	1.36
N171518	2.71	36.5	0.06	<2	<10	20	<0.5	<2	0.06	<0.5	1	21	31	0.63
N171519	2.02	0.6	0.08	3	10	10	<0.5	<2	2.24	0.5	12	9	35	2.99
N171520	3.09	0.3	0.13	3	<10	10	<0.5	<2	3.07	0.5	15	14	82	4.94
N171521	2.01	0.2	0.93	<2	<10	20	<0.5	2	0.71	<0.5	23	19	67	4.87
N171522	2.80	0.2	0.12	<2	<10	10	<0.5	<2	3.99	<0.5	17	9	50	4.97
N171523	3.05	<0.2	0.02	<2	<10	10	<0.5	<2	0.21	0.6	1	18	4	0.62
N171524	1.86	0.2	0.17	<2	<10	20	<0.5	<2	0.08	<0.5	4	11	14	1.35
N171525	2.54	0.3	0.40	4	10	10	<0.5	2	3.43	0.5	24	10	60	6.03
N171526	4.34	0.3	0.20	2	<10	10	<0.5	4	8.8	<0.5	31	5	77	9.06
N171527	3.34	<0.2	0.10	2	<10	10	<0.5	<2	2.25	0.5	10	13	30	2.93
N171528	2.38	0.7	0.12	5	10	10	<0.5	<2	4.51	0.5	19	9	93	4.97
N171529	2.37	0.5	0.14	3	<10	10	<0.5	<2	4.48	<0.5	20	8	60	5.18
N171530	4.69	0.5	0.12	4	10	10	<0.5	2	5.31	<0.5	17	7	53	5.06
N171531	3.97	0.4	0.09	3	10	10	<0.5	2	3.67	0.5	14	9	29	4.03
N171532	3.78	0.2	0.21	<2	<10	50	<0.5	<2	0.25	<0.5	2	11	3	0.81
N171533	3.17	<0.2	2.41	<2	<10	40	<0.5	<2	0.21	<0.5	28	40	55	7.23
N171534	2.59	<0.2	1.58	15	<10	50	<0.5	<2	2.95	0.5	29	17	127	8.78
N171535	3.37	<0.2	1.60	3	<10	50	<0.5	2	6.30	<0.5	28	15	121	10.45
N171536	2.96	<0.2	1.83	<2	<10	120	<0.5	2	2.89	<0.5	15	177	9	2.97
N171537	2.44	<0.2	2.85	<2	<10	90	<0.5	3	1.68	<0.5	43	295	82	5.13
N171538	4.27	1.4	0.11	480	<10	20	<0.5	6	0.03	<0.5	115	12	759	47.8
N171539	3.08	0.5	0.39	<2	<10	20	<0.5	3	0.10	<0.5	19	14	36	3.56
N171540	2.30	0.8	0.02	<2	<10	20	<0.5	<2	0.73	0.7	7	17	48	1.30

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165450

Description échantillon	Méthode élément L.D.	ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41		
		Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P %	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	U ppm	Th ppm	ME-ICP41	
N171501	<1	0.09	<10	0.62	1030	3	0.06	62	300	<2	1.49	<2	7	12	<20	<20	<20		
N171502	<1	0.07	<10	1.23	1320	2	0.10	100	270	3	3.29	<2	8	8	<20	<20	<20		
N171503	<1	0.09	<10	0.54	1195	6	0.07	48	380	<2	1.15	<2	6	13	<20	<20	<20		
N171504	<1	0.15	<10	0.74	945	2	0.07	48	400	2	0.89	<2	7	13	<20	<20	<20		
N171505	<1	0.23	<10	0.89	526	1	0.03	69	280	2	3.84	<2	15	4	<20	<20	<20		
N171506	<1	0.03	<10	1.82	1205	<1	0.02	53	760	2	0.06	<2	12	12	<20	<20	<20		
N171507	<1	0.11	<10	1.68	987	<1	0.03	37	680	<2	0.11	<2	5	46	<20	<20	<20		
N171508	<1	0.27	<10	1.47	969	<1	0.03	12	760	2	0.18	<2	6	22	<20	<20	<20		
N171509	<1	0.14	<10	0.27	130	<1	0.04	5	340	<2	0.14	<2	1	43	<20	<20	<20		
N171510	<1	0.01	<10	1.72	1040	<1	0.02	50	550	3	0.03	<2	9	80	<20	<20	<20		
N171511	<1	0.01	<10	2.08	852	2	0.01	36	450	<2	0.18	<2	18	5	<20	<20	<20		
N171512	<1	0.19	<10	0.83	562	2	0.04	25	290	<2	0.77	<2	3	24	<20	<20	<20		
N171513	<1	0.19	<10	0.57	560	12	0.04	25	350	3	1.00	<2	3	39	<20	<20	<20		
N171514	<1	0.20	<10	1.04	904	5	0.04	30	350	3	1.09	<2	4	47	<20	<20	<20		
N171515	<1	0.01	<10	1.29	1305	<1	0.02	49	490	4	0.61	<2	7	31	<20	<20	<20		
N171516	<0.01	<10	2.53	1295	<1	0.01	55	160	<2	0.05	<2	4	25	<20	<20	<20	<20		
N171517	<1	0.02	<10	0.14	273	1	0.03	4	70	13	0.18	<2	1	23	<20	<20	<20		
N171518	<1	0.03	<10	0.01	96	<1	0.02	3	90	9	0.13	<2	<1	8	<20	<20	<20		
N171519	<1	0.02	<10	0.19	624	20	0.02	9	490	6	0.67	<2	3	31	<20	<20	<20		
N171520	<1	0.06	<10	0.31	1045	3	0.02	17	350	10	0.68	<2	4	30	<20	<20	<20		
N171521	<1	0.07	<10	0.33	854	7	0.02	29	300	6	0.41	<2	4	8	<20	<20	<20		
N171522	<1	0.06	<10	0.53	1055	3	0.02	18	460	7	0.58	<2	4	51	<20	<20	<20		
N171523	<1	<0.01	<10	0.01	108	<1	0.02	2	10	14	0.06	<2	<1	14	<20	<20	<20		
N171524	<1	0.05	<10	0.45	1160	7	0.02	25	440	3	0.82	<2	1	13	<20	<20	<20		
N171525	<1	0.05	<10	0.01	340	<1	0.04	6	360	7	0.20	<2	6	37	<20	<20	<20		
N171526	<1	0.09	<10	1.32	1890	13	0.02	31	910	6	0.90	<2	8	105	<20	<20	<20		
N171527	<1	0.05	<10	0.30	623	11	0.03	10	220	10	0.38	<2	3	28	<20	<20	<20		
N171528	<1	0.05	<10	0.57	982	4	0.02	15	350	9	1.16	<2	4	59	<20	<20	<20		
N171529	<1	0.05	<10	0.75	1025	4	0.02	17	310	6	0.92	<2	5	65	<20	<20	<20		
N171530	<1	0.04	<10	0.63	1115	3	0.02	15	450	5	0.87	<2	8	88	<20	<20	<20		
N171531	<1	0.03	<10	0.51	829	4	0.02	12	440	5	0.75	<2	3	50	<20	<20	<20		
N171532	<1	0.04	<10	0.09	124	<1	0.07	3	230	18	0.13	<2	<1	33	<20	<20	<20		
N171533	<1	0.07	<10	1.07	1520	23	0.02	40	350	<2	0.17	<2	15	4	<20	<20	<20		
N171534	<1	0.14	<10	1.02	2270	23	0.01	43	160	3	0.81	<2	7	40	<20	<20	<20		
N171535	<1	0.16	<10	1.70	3040	<1	0.01	45	290	4	0.25	<2	8	88	<20	<20	<20		
N171536	<1	1.22	<10	1.67	645	<1	0.02	67	480	<2	0.04	<2	10	18	<20	<20	<20		
N171537	<1	0.76	<10	2.49	789	<1	0.02	144	830	<2	0.34	<2	7	15	<20	<20	<20		
N171538	1	0.04	<10	0.06	16	<1	0.01	440	70	65	>10.0	<2	<1	<1	<20	<20	<20		
N171539	<1	0.06	<10	0.13	612	5	0.03	19	350	8	0.99	<2	3	12	<20	<20	<20		
N171540	<1	0.01	<10	0.01	238	<1	0.03	4	40	18	0.76	<2	<1	37	<20	<20	<20		

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165450									
Description échantillon	Méthode élément L.D.	ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41	
		Ti %	U ppm	U ppm	V ppm	W ppm	Zn ppm	Au ppm	Au ppm
N171501	0.12	<10	<10	67	<10	112	0.059		
N171502	0.11	<10	<10	75	<10	554	0.038		
N171503	0.15	<10	<10	72	<10	66	0.017		
N171504	0.15	<10	<10	81	<10	112	0.075		
N171505	0.13	<10	<10	123	230	60	0.012		
N171506	0.38	<10	<10	252	<10	150	<0.005		
N171507	0.49	<10	<10	143	<10	104	<0.005		
N171508	0.38	<10	<10	177	<10	102	<0.005		
N171509	0.05	<10	<10	6	<10	10	0.010		
N171510	0.34	<10	<10	149	<10	125	<0.005		
N171511	0.12	<10	<10	219	<10	94	<0.005		
N171512	0.10	<10	<10	44	<10	66	0.006		
N171513	0.11	<10	<10	39	<10	45	0.005		
N171514	0.13	<10	<10	102	<10	78	0.005		
N171515	0.39	<10	<10	114	<10	85	<0.005		
N171516	0.20	<10	<10	70	<10	56	0.005		
N171517	<0.01	<10	<10	3	<10	50	0.010		
N171518	<0.01	<10	<10	2	<10	16	>10.0		
N171519	<0.01	<10	<10	4	<10	49	0.143		
N171520	<0.01	<10	<10	6	<10	59	0.040		
N171521	0.03	<10	<10	32	<10	52	0.024		
N171522	<0.01	<10	<10	6	<10	55	0.018		
N171523	<0.01	<10	<10	1	<10	47	0.008		
N171524	<0.01	<10	<10	2	<10	30	0.094		
N171525	<0.01	<10	<10	17	<10	55	0.032		
N171526	0.01	<10	<10	12	<10	64	0.056		
N171527	0.01	<10	<10	5	<10	42	0.010		
N171528	0.01	<10	<10	7	<10	55	0.064		
N171529	0.02	<10	<10	9	<10	52	0.074		
N171530	<0.01	<10	<10	6	<10	47	0.071		
N171531	<0.01	<10	<10	5	<10	48	0.038		
N171532	<0.01	<10	<10	3	<10	26	0.009		
N171533	0.05	<10	<10	142	<10	114	<0.005		
N171534	0.02	<10	<10	45	<10	69	0.057		
N171535	0.03	<10	<10	42	<10	69	0.056		
N171536	0.12	<10	<10	96	<10	49	<0.005		
N171537	0.20	<10	<10	90	<10	70	<0.005		
N171538	0.01	<10	<10	7	<10	1340	0.038		
N171539	<0.01	<10	<10	15	<10	39	0.020		
N171540	<0.01	<10	<10	1	<10	49	6.13		

minerals

CERTIFICAT D'ANALYSE VO15165450														
Description échantillon	Méthode élément unités L.D.	WEt-21	ME-ICP41											
		Poids reçu kg	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Co ppm	Cr ppm	Cu ppm	Fe %
NI171541	2.76	0.4	0.53	<2	<10	60	<0.5	<2	0.56	0.5	9	19	46	2.50
NI171542	2.18	0.3	1.58	<2	<10	40	<0.5	2	2.11	<0.5	29	27	108	5.88
NI171543	2.37	0.4	1.35	<2	<10	50	<0.5	<2	2.34	<0.5	29	22	99	5.87
NI171544	2.07	4.6	0.31	4	<10	30	<0.5	3	3.17	0.8	30	11	72	4.57
NI171545	3.38	1.1	0.81	4	10	30	<0.5	5	6.54	0.7	52	8	91	8.55
NI171546	2.75	0.8	1.37	4	<10	100	<0.5	<2	3.79	0.5	35	19	82	8.32
NI171547	3.08	0.2	0.46	2	<10	40	<0.5	<2	3.56	0.6	25	15	100	5.53
NI171548	2.68	<0.2	1.53	<2	<10	20	<0.5	<2	1.61	<0.5	19	5	173	3.03
NI171549	2.89	0.2	1.60	3	<10	80	<0.5	<2	1.48	<0.5	21	32	178	4.79
NI171550	3.25	<0.2	1.14	<2	<10	10	<0.5	<2	0.98	<0.5	12	196	8	1.85
NI171551	3.44	<0.2	0.80	230	<10	20	<0.5	<2	0.14	<0.5	17	25	57	2.28
NI171552	3.00	<0.2	0.95	31	<10	30	<0.5	<2	0.14	<0.5	8	17	31	6.36
NI171553	2.87	<0.2	0.85	88	<10	30	<0.5	<2	0.13	<0.5	12	10	31	4.48
NI171554	2.44	<0.2	0.92	127	<10	20	<0.5	<2	0.06	<0.5	19	17	57	7.77
NI171555	2.30	0.4	0.18	9	<10	10	<0.5	15	0.02	<0.5	15	16	45	4.39
NI171556	2.49	<0.2	1.21	477	<10	10	<0.5	3	0.08	<0.5	39	23	93	9.60
NI171557	2.87	<0.2	2.37	<2	<10	90	<0.5	<2	1.70	<0.5	16	17	36	4.57
NI171558	2.28	<0.2	3.10	84	<10	10	<0.5	5	0.66	<0.5	28	389	40	10.60
NI171559	3.26	<0.2	1.58	<2	<10	30	<0.5	<2	1.14	<0.5	29	69	51	5.08
NI171560	3.71	<0.2	2.06	3	<10	20	<0.5	<2	1.03	<0.5	31	81	59	5.17
NI171561	4.02	<0.2	1.10	2	<10	10	<0.5	<2	0.99	<0.5	26	57	61	4.43
NI171562	3.84	0.2	0.90	2	<10	10	<0.5	<2	0.96	<0.5	30	47	72	4.74
NI171563	3.63	<0.2	3.54	<2	<10	20	<0.5	2	2.35	<0.5	39	48	105	8.25
NI171564	2.88	0.7	1.62	<2	<10	10	<0.5	<2	1.20	<0.5	18	21	30	3.47
NI171565	3.09	<0.2	5.57	3	<10	10	<0.5	2	3.20	<0.5	48	159	47	10.80
NI171566	2.58	<0.2	1.70	<2	<10	10	<0.5	<2	0.13	<0.5	18	16	8	4.69
NI171567	3.44	<0.2	3.11	<2	10	10	<0.5	3	1.91	<0.5	32	60	99	6.96
NI171568	2.60	<0.2	0.17	<2	<10	40	<0.5	<2	0.52	<0.5	3	13	8	1.04
NI171569	3.49	<0.2	1.55	4	<10	30	<0.5	<2	0.98	<0.5	21	46	28	3.68
NI171570	4.79	0.5	0.37	2	<10	60	<0.5	<2	0.39	<0.5	29	9	21	1.80
NI171571	3.22	0.4	0.12	2	<10	20	<0.5	<2	0.22	1.4	4	17	27	0.96
NI171572	2.79	<0.2	0.80	<2	<10	10	<0.5	<2	0.38	<0.5	9	12	4	2.04
NI171573	3.44	1.4	0.14	3	<10	10	<0.5	<2	0.26	<0.5	10	16	34	1.88
NI171574	3.31	6.0	0.11	<2	10	10	<0.5	<2	0.11	<0.5	5	17	22	1.17

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221

www.alsglobal.com

minerals

Télécopieur: +1 (604) 984 0218

Page: 3 - B
Nombre total de pages: 3 (A - C)
plus les pages d'annexe
Finalisée date: 9- NOV- 2015
Compte: RESLUT

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165450

Description échantillon	Méthode échantillon unités L.D.	ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			
		Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	Tl ppm	U ppm	ME-ICP41
NI171541	<1	0.03	<10	0.21	865	4	0.04	11	130	13	0.46	<2	3	27	<20		
NI171542	<1	0.06	<10	0.77	1025	3	0.03	31	330	9	1.32	<2	9	43	<20		
NI171543	<1	0.05	<10	0.78	1240	1	0.03	29	290	8	0.96	<2	8	43	<20		
NI171544	1	0.07	<10	0.44	945	4	0.03	21	230	13	2.54	<2	3	65	<20		
NI171545	1	0.13	<10	1.19	1900	6	0.03	42	380	7	3.55	<2	7	109	<20		
NI171546	1	0.11	<10	1.05	2430	5	0.03	37	510	5	1.80	2	9	60	<20		
NI171547	1	0.08	<10	0.50	1430	2	0.03	28	310	7	1.13	2	5	60	<20		
NI171548	<1	0.07	<10	0.86	806	<1	0.03	11	450	<2	0.02	<2	9	27	<20		
NI171549	1	0.25	<10	0.76	930	1	0.15	32	540	3	0.59	<2	10	15	<20		
NI171550	<1	0.06	<10	0.85	334	<1	0.10	39	380	<2	<0.01	<2	6	19	<20		
NI171551	<1	0.13	<10	0.60	411	3	0.06	31	240	6	1.42	<2	2	9	<20		
NI171552	<1	0.16	10	0.63	361	3	0.04	18	410	8	0.68	<2	2	7	<20		
NI171553	1	0.15	10	0.54	379	2	0.03	17	680	6	0.74	<2	1	8	<20		
NI171554	1	0.10	10	0.66	434	6	0.02	24	420	3	0.63	<2	2	3	<20		
NI171555	1	0.02	<10	0.14	131	1	0.01	28	100	3	1.28	<2	1	3	<20		
NI171556	<1	0.07	10	0.99	645	4	0.02	67	410	6	2.44	<2	2	3	<20		
NI171557	<1	0.41	10	1.00	861	1	0.09	37	710	<2	0.01	<2	4	38	<20		
NI171558	<1	0.03	10	3.77	1410	<1	0.02	161	2040	2	1.42	<2	12	14	<20		
NI171559	<1	0.03	<10	1.29	478	14	0.07	51	330	3	0.35	<2	5	29	<20		
NI171560	1	0.03	<10	1.69	586	12	0.06	59	360	<2	0.21	<2	5	29	<20		
NI171561	<1	0.02	<10	0.83	435	15	0.07	34	550	3	0.32	<2	4	21	<20		
NI171562	1	0.02	<10	0.67	493	17	0.07	27	610	2	0.46	<2	3	19	<20		
NI171563	1	0.05	<10	1.76	928	<1	0.04	31	710	<2	0.41	<2	26	22	<20		
NI171564	1	0.04	<10	1.22	448	2	0.04	20	450	2	<0.01	<2	5	86	<20		
NI171565	<1	0.03	<10	3.72	1235	<1	0.02	94	610	2	<0.01	<2	28	37	<20		
NI171566	<1	0.03	<10	0.40	702	<1	0.02	23	250	<2	0.01	<2	7	3	<20		
NI171567	1	0.01	<10	1.65	929	<1	0.02	44	560	<2	0.05	<2	19	21	<20		
NI171568	1	0.09	<10	0.60	629	2	0.04	50	390	6	0.14	<2	4	28	<20		
NI171569	1	0.06	10	0.13	330	1	0.06	7	630	11	0.64	<2	1	20	<20		
NI171570	1	0.06	<10	0.05	360	1	0.04	5	210	73	0.04	<2	1	16	<20		
NI171571	<1	0.02	<10	0.03	360	1	0.04	5	100	210	<2	<0.01	<2	3	8	<20	
NI171572	<1	0.06	<10	0.56	277	1	0.05	6	80	8	0.23	<2	1	9	<20		
NI171573	1	0.03	<10	0.07	360	40	0.02	5	340	6	0.06	<2	1	7	<20		
NI171574	<1	0.03	<10	0.02	303	13	0.02	5									

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

minerals

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165450

Description échantillon	Méthode élément L.D.	ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			Au-AA23			Au-GRA21		
		Ti	U	V	ppm	ppm	ppm	W	ppm	Zn	ppm	Au	ppm	Au	ppm	Au	ppm		
NI71541	<0.01	<10	<10	28	<10	66	2.32												
NI71542	0.01	<10	<10	81	<10	86	1.465												
NI71543	0.01	<10	<10	63	<10	81	2.23												
NI71544	0.01	<10	<10	12	10	54	>10.0												
NI71545	0.01	<10	<10	25	30	64	1.060												
NI71546	0.02	<10	<10	67	<10	56	9.31												
NI71547	0.02	<10	<10	27	<10	46	0.500												
NI71548	0.26	<10	<10	123	<10	59	0.013												
NI71549	0.24	<10	<10	109	<10	44	<0.005												
NI71550	0.15	<10	<10	48	<10	28	<0.005												
NI71551	0.07	<10	<10	24	<10	49	0.009												
NI71552	0.12	<10	<10	20	<10	56	0.011												
NI71553	0.04	<10	<10	12	<10	46	0.008												
NI71554	0.05	<10	<10	24	<10	61	0.011												
NI71555	0.01	<10	<10	7	<10	26	0.012												
NI71556	0.05	<10	<10	31	<10	80	0.018												
NI71557	0.16	<10	<10	64	<10	69	<0.005												
NI71558	0.06	<10	<10	93	<10	142	<0.005												
NI71559	0.29	<10	<10	94	<10	51	0.007												
NI71560	0.28	<10	<10	102	<10	66	0.006												
NI71561	0.23	<10	<10	88	<10	37	0.006												
NI71562	0.17	<10	<10	83	<10	33	0.008												
NI71563	0.14	<10	<10	266	<10	135	0.005												
NI71564	0.23	<10	<10	78	<10	42	0.010												
NI71565	0.06	<10	<10	278	<10	160	<0.005												
NI71566	0.06	<10	<10	106	<10	62	<0.005												
NI71567	0.12	<10	<10	151	<10	102	<0.005												
NI71568	<0.01	<10	<10	4	<10	18	0.038												
NI71569	0.10	<10	<10	55	<10	84	0.005												
NI71570	<0.01	<10	<10	14	<10	30	0.318												
NI71571	<0.01	<10	<10	7	<10	43	0.023												
NI71572	0.12	<10	<10	54	<10	14	<0.005												
NI71573	<0.01	<10	<10	5	<10	34	>10.0												
NI71574	<0.01	<10	<10	3	<10	21	12.40												

Projet: MONEXCO
CERTIFICAT D'ANALYSE VO15165450

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.

Au- AA23
LOG- 22
WEI- 21

CRU- 31
PUL- QC
SPL- 21

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada.
ME- ICP41

Applique à la Méthode:

Applique à la Méthode:

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

CERTIFICAT SD16170888

Projet: Monnexco
Bon de commande #: MB16-07
Ce rapport s'applique aux 27 échantillons de roche soumis à notre laboratoire de Val
d'Or, QC, Canada le 1- OCT- 2016.
Les résultats sont transmis à:
LUTSISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
LOG-22	Entrée échantillon - Reçu sans code barre
CRU-31	Granulation - 70 % <2 mm
SPL-21	Échant. fractionné - div. riffles
PUL-31	Pulvérisé à 85 % <75 um

PROCÉDURES ANALYTIQUES

CODE ALS	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30 g fini FA-AA	AAS
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM

À: RESSOURCES LUTSISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

Page: 1
Nombre total de pages: 2 (A)
plus les pages d'annexe
Finalisée date: 24- OCT- 2016
Compte: RESLUT

CERTIFICAT D'ANALYSE SD16170888					
Description échantillon	Méthode élément L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au-GR421 Au ppm	
S279632		2.30	1.685		
S279633		2.81	>10.0		
S279969		2.56	0.010		
S279970		2.96	0.028		
S279971		2.89	0.040		
S279972		2.55	0.005		
S279973		2.68	<0.005		
S279974		3.05	<0.005		
S279975		3.66	<0.005		
S280383		2.11	<0.005		
S280384		1.93	<0.005		
S280385		2.12	<0.005		
S280386		1.94	<0.005		
S280387		2.24	0.006		
S280388		2.26	<0.005		
S280389		2.00	<0.005		
S280390		2.45	0.062		
S280391		2.69	0.194		
S280392		2.87	<0.005		
S280393		2.49	0.009		
S280394		2.38	<0.005		
S280395		1.87	0.026		
S280396		2.77	0.752		
S280397		1.72	0.010		
S280398		2.61	0.026		
S280399		3.16	0.011		
S280400		2.66	<0.005		

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16170888

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Sudbury, 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.
CRU- QC
SPL- 21

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.
Au- AA23

Applique à la Méthode:
CRU- 31
PUL- QC

Applique à la Méthode:
Au- GRA21

PUL- 31
LOG- 22
WEI- 21

CERTIFICAT VO16096437

Projet: Monnexco
Bon de commande #: MB16- 07
Ce rapport s'applique aux 27 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 17-JUIN-2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI- 21	Poids échantillon reçu
CRU- QC	Test concassage QC
PUL- QC	Test concassage QC
LOG- 22	Entrée échantillon - Reçu sans code barre
CRU- 31	Granulation - 70 % <2 mm
SPL- 21	Échant. fractionné - div. riffles
PUL- 31	Pulvérisé à 85 % <75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au- AA23	Au 30 g fini FA- AA
Au- GRA21	Au 30 g fini FA- GRAV

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

minerals

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16096437

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au-GRA21 Au ppm
S279798		2.52	>10.0	12.25
S279799		2.39	1.505	
S279800		2.45	2.57	
S279819		2.45	0.068	
S279820		2.06	0.006	
S279821		2.97	0.016	
S279822		1.86	<0.005	
S279823		2.63	<0.005	
S279824		2.79	0.174	
S279825		2.12	0.018	
S279826		2.08	1.235	
S279827		2.56	0.174	
S279828		2.17	9.05	
S279829		2.74	0.561	
S279830		2.00	3.88	
S279831		2.32	0.206	
S279840		2.39	1.160	
S279841		1.80	0.008	
S279842		2.26	0.076	
S279843		2.34	3.92	
S279844		2.11	0.523	
S279845		1.95	1.255	
S279846		2.67	0.064	
S279847		2.77	0.027	
S279848		2.27	0.008	
S279849		2.27	0.011	
S279850		2.49	0.190	

CERTIFICAT VO16123781

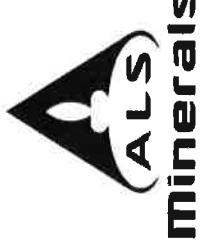
Projet: Monnexco
Bon de commande #: MB16-07
Ce rapport s'applique aux 44 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 28-JUIL-2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS |

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
LOG-22	Entrée échantillon - Reçu sans code barre
CRU-31	Granulation - 70 % < 2 mm
SPL-21	Échant. fractionné - div. riffles
PUL-31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au-AA23	Au 30 g fini FA-AA
Au-GRA21	Au 30 g fini FA-GRAV

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****


Nacera Amara
Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

Projet: Monnexco

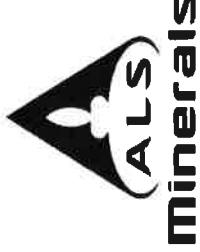
CERTIFICAT D'ANALYSE VO16123781

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au- GRA21 Au ppm
S279651		2.77	0.055	0.05
S279652		3.05	<0.005	
S279653		2.58	0.005	
S279654		3.12	<0.005	
S279655		3.09	0.032	
S279656		3.51	<0.005	
S279657		2.62	2.12	
S279658		2.30	0.102	
S279659		2.02	0.228	
S279660		3.41	0.006	
S279661		2.89	<0.005	
S279662		2.76	6.43	
S279663		3.27	0.086	
S279664		2.85	1.170	
S279665		1.84	0.006	
S279666		2.94	2.31	
S279667		2.58	4.35	
S279668		2.68	0.007	
S279669		1.61	>10.0	
S279670		3.35	0.012	
S279671		3.63	<0.005	
S279672		3.04	<0.005	
S279673		4.02	<0.005	
S279674		2.81	<0.005	
S279675		2.66	<0.005	
S279676		2.82	<0.005	
S279677		2.32	0.006	
S279678		2.80	<0.005	
S279679		2.58	<0.005	
S279680		2.93	0.015	
S279681		2.93	0.006	
S279682		2.54	0.283	
S279683		3.79	0.135	
S279684		3.97	3.09	
S279685		2.42	<0.005	
S279686		2.20	0.057	
S279687		3.65	0.116	
S279694		2.40	<0.005	
S279695		1.65	<0.005	
S279696		2.68	0.026	

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218


Projet: Monnexco

Page: 3 - A
Nombre total de pages: 3 (A)
plus les pages d'annexe
Finalisée date:
10- AOUT- 2016
Compte: RESLUT

CERTIFICAT D'ANALYSE VO16123781

Description échantillon	Méthode élément unités L.D.	WEI- 21 Poids reçu kg	Au- AA23 Au ppm	Au- GRA21 Au ppm
S279697		2.38	0.023	
S279698		2.74	<0.005	
S279699		1.98	<0.005	
S279700		2.50	<0.005	

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

Page: Annexe 1
Total # les pages d'annexe: 1
Finalisée date:
10-AOUT- 2016
Compte: RESLUT

CERTIFICAT D'ANALYSE VO16123781	
	COMMENTAIRE DE CERTIFICAT
	ADRESSE DE LABORATOIRE
Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada. Au- AA23 LOG- 22 WEI- 21	CRU- 31 Au- GRA21 PUL- QC SPL- 21
Applique à la Méthode: Au- AA23 LOG- 22 WEI- 21	

CERTIFICAT VO15165367

Projet: MONEXCO

Ce rapport s'applique aux 50 échantillons de carotte forage soumis à notre laboratoire de Val d'Or, QC, Canada le 28-OCT-2015.

Les résultats sont transmis à:

DAVID MCDONALD

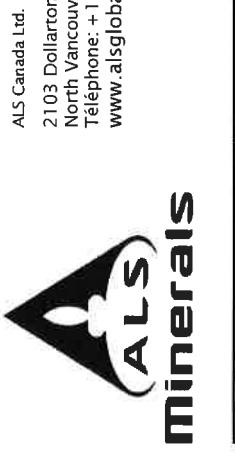
DAVID MCDONALD

DAVID MCDONALD

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
LOG-22	Entrée échantillon - Reçu sans code barre
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
CRU-31	Granulation - 70 % <2 mm
SPL-21	Échant. fractionné - div. rifflés
PUL-31	Pulvérisé à 85 % <75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
ME-ICP41	Aqua regia ICP- AES 35 éléments
Au-AA23	Au 30 g fini FA-AA
Au-GRA21	Au 30 g fini FA- GRAV
	WST- SIM

À: RESSOURCES LUTSVISKY INC.
ATTN: LUTSVISKY ADMINISTRATION
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2


Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: Nacera Amara
Nacera Amara, Laboratory Manager, Val d'Or

Description échantillon	Méthode élément L.D.	WEI 21	Au-AA23		Au-GrA21		ME-CP41		ME-CP41		ME-CP41		ME-CP41		ME-CP41		ME-CP41	
			Poids reçu kg	Au ppm	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	ME-CP41	ME-CP41	ME-CP41
NI71801		2.59	0.014	0.2	1.16	38	<2	<10	30	<0.5	3	0.09	<0.5	18	16	46		
NI71802		3.00	0.016	0.6	1.05	<2	<10	20	<0.5	3	1.38	0.5	42	21	353			
NI71803		2.55	<0.005	0.3	1.46	<2	<10	90	<0.5	2	1.57	<0.5	31	33	169			
NI71804		1.94	<0.005	<0.2	1.95	2	10	300	<0.5	2	0.68	<0.5	17	228	11			
NI71805		2.75	<0.005	0.4	1.97	<2	<10	180	<0.5	2	1.23	<0.5	24	20	76			
NI71806		2.35	0.007	0.5	2.15	2	<10	130	<0.5	2	1.97	<0.5	40	40	25	228		
NI71807		2.06	0.005	<0.2	0.75	15	<10	30	<0.5	2	0.15	<0.5	17	9	42			
NI71808		2.23	<0.005	<0.2	0.80	<2	<10	20	<0.5	<2	0.20	<0.5	11	5	19			
NI71809		2.28	0.006	0.2	0.93	297	<10	20	<0.5	<2	0.11	<0.5	25	13	44			
NI71810		2.71	0.010	0.2	0.60	<2	<10	30	<0.5	2	0.31	<0.5	12	5	25			
NI71811		1.74	0.007	<0.2	0.77	8	<10	30	<0.5	2	0.10	<0.5	12	20	21			
NI71812		2.35	0.008	0.2	2.90	<2	<10	20	<0.5	4	0.80	<0.5	20	56	89			
NI71813		2.14	0.007	<0.2	3.33	<2	<10	30	<0.5	2	0.67	<0.5	30	16	36			
NI71814		2.18	<0.005	0.3	0.82	<2	<10	10	<0.5	2	0.46	<0.5	24	22	28			
NI71815		2.84	<0.005	0.2	0.71	<2	<10	10	<0.5	2	0.73	<0.5	16	20	27			
NI71816		1.81	<0.005	<0.2	4.36	<2	<10	40	<0.5	2	1.95	<0.5	42	48	85			
NI71817		3.36	<0.005	0.3	0.84	<2	<10	10	<0.5	<2	2.93	<0.5	20	23	117			
NI71818		1.72	<0.005	<0.2	2.28	<2	<10	<10	<0.5	2	0.74	<0.5	27	22	30			
NI71819		3.19	0.005	0.6	0.65	<2	<10	10	<0.5	<2	0.93	<0.5	9	23	48			
NI71820		2.30	<0.005	0.5	0.32	<2	<10	10	<0.5	<2	0.66	<0.5	6	20	28			
NI71821		2.54	<0.005	0.4	1.06	<2	<10	10	<0.5	2	0.82	<0.5	14	25	41			
NI71822		2.35	<0.005	0.3	0.35	<2	<10	10	<0.5	<2	0.73	<0.5	16	21	37			
NI71823		2.12	<0.005	0.4	0.24	<2	<10	10	<0.5	<2	0.11	<0.5	9	19	15			
NI71824		2.35	<0.005	<0.2	2.13	<2	<10	10	<0.5	2	2.37	<0.5	21	19	25			
NI71825		1.71	0.009	<0.2	1.41	<2	<10	10	<0.5	2	0.59	<0.5	15	20	25			
NI71826		2.16	<0.005	<0.2	4.85	<2	<10	10	<0.5	3	2.82	<0.5	43	54	64			
NI71827		2.24	<0.005	0.2	2.33	<2	<10	30	<0.5	2	1.36	<0.5	25	18	47			
NI71828		2.40	<0.005	<0.2	3.93	<2	<10	<10	<0.5	4	0.86	<0.5	43	56	69			
NI71829		2.79	1.205	1.1	0.22	<2	<10	10	<0.5	<2	0.05	<0.5	5	18	22			
NI71830		2.92	2.64	1.9	0.23	<2	<10	10	<0.5	<2	0.07	<0.5	8	20	29			
NI71831		3.60	0.116	0.3	0.88	<2	<10	10	<0.5	2	3.26	<0.5	20	32	112			
NI71832		3.42	0.223	0.6	0.82	3	<10	10	<0.5	3	2.94	<0.5	23	32	98			
NI71833		3.81	>10.0	40.3	3.5	0.08	<2	<10	<0.5	3	0.03	<0.5	4	16	11			
NI71834		3.68	>10.0	16.15	3.5	0.07	<2	<10	<0.5	<2	0.02	<0.5	3	15	14			
NI71835		2.60	>10.0	35.9	3.7	0.27	<2	<10	<0.5	5	0.72	<0.5	10	22	31			
NI71836		2.69	>10.0	51.0	3.6	0.22	<2	<10	<0.5	3	0.81	<0.5	11	18	23			
NI71837		3.62	>10.0	37.9	7.5	0.16	2	<10	<0.5	2	1.22	<0.5	14	21	58			
NI71838		3.36	0.032	<0.2	1.54	<2	<10	10	<0.5	3	0.84	<0.5	14	61	99			
NI71839		2.57	0.058	1.3	1.31	<2	<10	10	<0.5	<2	0.53	<0.5	12	42	1295			
NI71840		2.54	0.019	1.4	1.54	<2	<10	10	<0.5	<2	0.50	<0.5	9	156	1195			

CERTIFICAT D'ANALYSE VO15165367														
Description échantillon	Méthode élément L.D.	ME-ICP41 Fe %	ME-ICP41 Ga ppm	ME-ICP41 Hg ppm	ME-ICP41 K %	ME-ICP41 La ppm	ME-ICP41 Mg %	ME-ICP41 Mn ppm	ME-ICP41 Mo ppm	ME-ICP41 Ni %	ME-ICP41 Pb ppm	ME-ICP41 S %	ME-ICP41 Sb ppm	ME-ICP41 Sc ppm
N171801	4.66 <10	<1	0.13	10	0.72	370	4	0.04	27	390	7	0.42	<2	1
N171802	7.38 <10	<1	0.09	<10	0.26	1265	1	0.07	59	430	2	3.21	<2	5
N171803	5.85 <10	<1	0.22	<10	0.43	1230	1	0.11	52	480	<2	1.68	<2	7
N171804	4.50 <10	<1	1.19	<10	1.50	748	3	0.02	98	270	<2	0.06	<2	12
N171805	5.40 <10	1	0.69	10	0.93	1080	1	0.10	30	1030	4	1.03	<2	3
N171806	8.96 10	1	0.23	<10	0.68	1580	10	0.23	58	250	3	1.90	<2	12
N171807	3.84 <10	<1	0.12	10	0.44	230	4	0.03	61	400	3	1.83	<2	1
N171808	1.81 <10	1	0.15	10	0.45	242	1	0.04	15	790	2	0.56	<2	1
N171809	4.56 <10	<1	0.10	10	0.81	427	3	0.04	68	350	5	3.07	<2	1
N171810	2.72 <10	<1	0.25	10	0.28	180	1	0.02	24	590	4	1.04	<2	1
N171811	2.21 <10	<1	0.20	10	0.46	267	3	0.04	29	380	3	0.59	<2	2
N171812	13.30 10	<1	0.05	<10	1.14	2210	<1	0.07	44	240	3	0.77	<2	9
N171813	6.58 10	<1	0.18	<10	2.82	952	2	0.03	32	340	<2	0.29	<2	5
N171814	3.87 <10	<1	0.05	<10	0.75	354	17	0.04	13	200	3	0.80	<2	2
N171815	3.05 <10	<1	0.04	<10	0.66	362	7	0.04	10	180	2	0.47	<2	2
N171816	9.46 20	<1	0.03	<10	2.28	1390	<1	0.02	31	630	<2	0.07	2	28
N171817	3.63 <10	<1	0.01	<10	0.84	494	8	0.04	13	210	<2	0.51	<2	4
N171818	5.09 10	<1	0.01	<10	1.97	658	1	0.03	24	300	<2	0.02	<2	6
N171819	2.18 <10	<1	0.01	<10	0.52	281	2	0.03	8	110	3	0.07	<2	3
N171820	1.79 <10	<1	0.01	<10	0.27	199	6	0.03	5	80	2	0.17	<2	1
N171821	3.53 <10	<1	0.01	<10	0.86	388	9	0.05	13	200	2	0.15	<2	4
N171822	2.14 <10	<1	0.01	<10	0.33	304	2	0.03	6	110	4	0.56	<2	2
N171823	1.46 <10	<1	0.01	<10	0.22	253	2	0.03	3	60	5	0.13	<2	6
N171824	6.25 10	<1	0.01	<10	0.49	1205	<1	0.01	31	250	<2	0.03	<2	6
N171825	3.82 <10	<1	0.05	<10	0.33	831	1	0.02	24	240	<2	0.03	<2	6
N171826	9.78 20	<1	0.02	<10	3.14	1020	<1	0.02	56	580	2	0.18	<2	31
N171827	5.51 10	<1	0.09	<10	0.51	665	1	0.04	31	620	2	0.23	<2	3
N171828	8.34 10	1	<0.01	<10	2.94	692	<1	0.03	50	690	<2	0.06	<2	6
N171829	1.46 <10	<1	0.02	<10	0.08	323	3	0.03	7	80	3	0.09	<2	1
N171830	2.06 <10	<1	0.03	<10	0.07	423	4	0.02	9	120	3	0.30	<2	2
N171831	4.99 <10	<1	0.06	<10	0.85	1025	8	0.02	22	510	<2	0.41	<2	7
N171832	5.19 <10	<1	0.06	<10	0.84	1240	8	0.02	25	410	<2	0.39	<2	7
N171833	1.06 <10	<1	0.01	<10	0.02	156	3	0.02	3	30	5	0.07	<2	1
N171834	1.03 <10	<1	0.01	<10	0.02	158	2	0.02	3	20	8	0.06	<2	1
N171835	2.28 <10	<1	0.03	<10	0.14	424	16	0.02	9	90	5	0.27	<2	2
N171836	2.32 <10	<1	0.02	<10	0.15	412	15	0.02	10	90	6	0.48	<2	2
N171837	2.71 <10	<1	0.04	<10	0.19	581	86	0.02	10	130	8	0.65	<2	2
N171838	3.95 10	<1	0.04	<10	1.10	339	<1	0.08	28	670	3	0.06	<2	5
N171839	3.11 10	<1	0.02	<10	0.88	355	<1	0.06	28	510	4	0.21	<2	3
N171840	3.29 10	<1	0.02	<10	1.21	360	<1	0.05	62	680	3	0.14	<2	2

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.

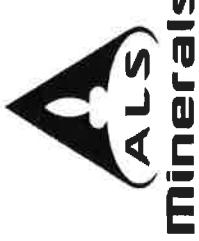
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

minerals

Page: 2 - C
Nombre total de pages: 3 (A - C)
plus les pages d'annexe
Finalisée date: 13-NOV-2015
Compte: RESLUT


Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165367

Description échantillon	Méthode élément L.D.	ME-ICP41				ME-ICP41				ME-ICP41				ME-ICP41			
		Sr ppm	Th ppm	Ti %	U ppm	Ti ppm	U ppm	V ppm	W ppm	Ti ppm	U ppm	V ppm	W ppm	Zn ppm	Ti ppm	U ppm	V ppm
N171801		12	<20	0.03	<10	<10	<10	14	<10	109							
N171802		9	<20	0.16	<10	<10	<10	53	<10	117							
N171803		9	<20	0.23	<10	<10	<10	81	<10	95							
N171804		8	<20	0.18	<10	<10	<10	152	<10	79							
N171805		36	<20	0.18	<10	<10	<10	51	<10	48							
N171806		8	<20	0.15	<10	<10	<10	91	<10	60							
N171807		9	<20	0.05	<10	<10	<10	8	<10	50							
N171808		12	<20	<0.01	<10	<10	<10	8	<10	92							
N171809		8	<20	0.02	<10	<10	<10	13	<10	147							
N171810		11	<20	0.03	<10	<10	<10	7	<10	38							
N171811		12	<20	0.07	<10	<10	<10	23	<10	43							
N171812		4	<20	0.05	<10	<10	<10	103	<10	109							
N171813		15	<20	0.25	<10	<10	<10	126	<10	85							
N171814		21	<20	0.14	<10	<10	<10	82	<10	23							
N171815		17	<20	0.11	<10	<10	<10	65	<10	21							
N171816		28	<20	0.03	<10	<10	<10	295	<10	128							
N171817		26	<20	0.13	<10	<10	<10	86	<10	22							
N171818		77	<20	0.21	<10	<10	<10	118	<10	49							
N171819		30	<20	0.10	<10	<10	<10	47	<10	18							
N171820		15	<20	0.06	<10	<10	<10	31	<10	10							
N171821		42	<20	0.17	<10	<10	<10	80	<10	24							
N171822		10	<20	0.05	<10	<10	<10	33	<10	13							
N171823		9	<20	0.02	<10	<10	<10	19	<10	11							
N171824		14	<20	0.04	<10	<10	<10	104	<10	84							
N171825		6	<20	0.05	<10	<10	<10	91	<10	54							
N171826		36	<20	0.06	<10	<10	<10	274	<10	127							
N171827		21	<20	0.09	<10	<10	<10	76	<10	88							
N171828		45	<20	0.31	<10	<10	<10	175	<10	120							
N171829		8	<20	<0.01	<10	<10	<10	10	<10	29							
N171830		6	<20	<0.01	<10	<10	<10	9	<10	29							
N171831		26	<20	<0.01	<10	<10	<10	34	<10	57							
N171832		27	<20	<0.01	<10	<10	<10	33	<10	59							
N171833		7	<20	<0.01	<10	<10	<10	3	<10	24							
N171834		9	<20	<0.01	<10	<10	<10	3	<10	29							
N171835		11	<20	<0.01	<10	<10	<10	12	<10	37							
N171836		12	<20	<0.01	<10	<10	<10	11	<10	38							
N171837		17	<20	<0.01	<10	<10	<10	6	<10	39							
N171838		19	<20	0.38	<10	<10	<10	115	<10	35							
N171839		10	<20	0.22	<10	<10	<10	64	<10	34							
N171840		8	<20	0.16	<10	<10	<10	46	<10	37							

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSWISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

Projet: MONEXCO

Page: 3 - A
Nombre total de pages: 3 (A - C)
plus les pages d'annexe
Finalisée date: 13- NOV- 2015
Compte: RESLUT

CERTIFICAT D'ANALYSE VO15165367

Description échantillon	Méthode élément unités L.D.	WEI-21	Au-Ag23	Au-GR21	ME-ICP41							
		Poids reçu	Au	Au	Ag	Al	As	Ba	Be	Bi	Ca	Co
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
NI71841	1.97	0.019	0.4	1.05	<2	2	10	20	<0.5	<2	0.98	<0.5
NI71842	3.65	0.008	<0.2	1.81	2	310	<10	<0.5	3	0.86	<0.5	20
NI71843	2.35	0.026	0.2	0.38	<2	<10	50	<0.5	2	2.58	<0.5	41
NI71844	2.73	0.119	0.2	0.14	<2	<10	20	<0.5	<2	0.78	<0.5	9
NI71845	3.27	0.008	<0.2	0.72	<2	<10	40	<0.5	<2	0.96	<0.5	19
NI71846	3.23	<0.005	<0.2	0.92	<2	<10	70	<0.5	4	2.31	<0.5	28
NI71847	3.16	0.016	0.6	0.16	<2	<10	40	<0.5	9	0.57	<0.5	4
NI71848	0.93	<0.005	0.3	2.56	2	120	10	<0.5	2	0.73	<0.5	124
NI71849	2.26	<0.005	<0.2	3.00	<2	<10	10	<0.5	3	1.07	<0.5	25
NI71850	1.88	0.036	<0.2	0.08	<2	<10	10	<0.5	<2	0.05	<0.5	3

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165367

Description échantillon	Méthode élément unités L.D.	ME-ICP41											
		ME-ICP41											
		ppm											
	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10	2	2
NI71841	2.42	10	<1	0.02	<10	0.52	210	<1	0.04	11	580	2	0.15
NI71842	3.92	10	1	0.01	<10	1.29	567	<1	0.06	34	670	5	0.10
NI71843	3.82	<10	<1	0.08	10	1.19	779	42	0.03	76	700	4	2.06
NI71844	1.63	<10	<1	0.04	10	0.16	353	1	0.04	8	320	3	0.30
NI71845	2.90	<10	1	0.05	10	1.02	602	54	0.02	105	720	4	0.92
NI71846	4.75	10	<1	0.06	10	1.89	1115	55	0.02	165	840	7	2.17
NI71847	1.04	<10	<1	0.07	10	0.06	222	2	0.05	3	290	<2	0.18
NI71848	7.73	10	<1	0.08	<10	1.93	459	<1	0.03	131	600	3	1.65
NI71849	6.99	10	<1	0.02	<10	1.58	946	<1	0.03	24	590	2	0.02
NI71850	1.10	<10	<1	0.01	<10	0.01	168	1	0.04	2	150	3	0.34

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

A: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
Laval QC H7L 6B2

Télécopieur: +1 (604) 984 0218

minerals

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165367

Description échantillon	Méthode élément unités L.D.	ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41		
		Sr ppm	Th ppm	Ti %	ME-ICP41	Tl ppm	U ppm	ME-ICP41	V ppm	W ppm	ME-ICP41	Zn ppm	ME-ICP41	ppm	ppm	ppm
N171841	30	<20	0.36	<10	<10	<10	<10	85	<10	<10	29	<10	29	29	29	29
N171842	4	<20	0.38	<10	<10	<10	<10	128	<10	<10	84	<10	84	84	84	84
N171843	142	<20	<0.01	<10	<10	<10	<10	19	<10	<10	42	<10	42	42	42	42
N171844	29	<20	<0.01	<10	<10	<10	<10	2	<10	<10	21	<10	21	21	21	21
N171845	30	<20	<0.01	<10	<10	<10	<10	52	<10	<10	60	<10	60	60	60	60
N171846	80	<20	<0.01	<10	<10	<10	<10	65	<10	<10	98	<10	98	98	98	98
N171847	20	<20	<0.01	<10	<10	<10	<10	2	<10	<10	11	<10	11	11	11	11
N171848	10	<20	0.29	<10	<10	<10	<10	127	<10	<10	79	<10	79	79	79	79
N171849	21	<20	0.58	<10	<10	<10	<10	145	<10	<10	92	<10	92	92	92	92
N171850	12	<20	<0.01	<10	<10	<10	<10	2	<10	<10	16	<10	16	16	16	16

CERTIFICAT D'ANALYSE VO15165367	
	COMMENTAIRE DE CERTIFICAT
	ADRESSE DE LABORATOIRE
Au- AA23 LOG- 22 WEI- 21	Au- GRA21 PUL- 31
	Au- 31 PUL- QC
	CRU- QC SPL- 21
Applique à la Méthode: ME- ICP41	Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada. Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada.

CERTIFICAT VO15167223

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçus
SCR-21	Filtrer à - 100 - 106 um
LOG-22	Entrée échantillon - Reçu sans code barre
PUL-21	Pulvériser échantillon entier
CRU-31	Granulation - 70 % < 2 mm
SPL-34	Frais fractionnement pulpe
CRU-QC	Test concassage QC
BAG-01	Entreposage pulpe de ref.

PROCÉDURES ANALYTIQUES		
CODE ALS	DESCRIPTION	INSTRUMENT
Au-AA25D	Teneur marchande Au 30 g FA AA dup	AAS
ME-ICP41	Aqua regia ICP- AES 35 éléments	ICP- AES
Au-SCR21	Au essai pyro filtre - 100 - 106 um	WST- SIM
Au-AA25	Teneur marchande Au 30 g fini FA AA	AAS

Projet: MONEXCO

Ce rapport s'applique aux 12 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 29- OCT- 2015.

Les résultats sont transmis à:

LUTSVISKY ADMINISTRATION
DAVID. MCDONALD

DAVID MCDONALD

À: RESSOURCES LUTSVISKY INC.
ATTN:LUTSVISKY ADMINISTRATION
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

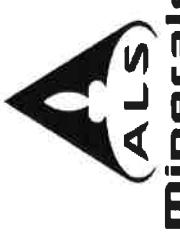
Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Nacera Amara
Signature: Nacera Amara

Nacera Amara, Laboratory Manager, Val d'Or

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2


Page: 2 - A
Nombre total de pages: 2 (A - C)
Plus les pages d'annexe
Finalisée date: 14- NOV- 2015
Compte: RESLT

minerals

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15167223

Description échantillon	Méthode élément unités L.D.	WEI- 21	Au- SCR21	Au- SCR21	Au- SCR21	Au- SCR21	Au- SCR21	WT + Fr	WT + Fr	Au- AA25	Au- AA25D	ME- ICP41							
		Poids reçu kg	Au Total	Au (+) F ppm	Au (-) F ppm	mg	mg	g	g	Au	Au	ppm	ppm	Ag	Ag	As	As	ppm	ppm
N171575	1.35	<0.05	<0.05	<0.05	<0.001	52.95	1300.5	<0.01	<0.01	<0.2	<0.2	0.68	<2	<10	<10	30	<0.5		
N171576	2.61	5.93	67.8	4.74	3.353	49.48	2574	4.74	4.74	0.7	0.47	21	<10	10	<0.5				
N171577	1.15	5.78	75.9	3.64	2.636	34.72	1133.5	3.54	3.73	0.6	0.23	<2	<10	20	<0.5				
N171578	2.44	0.13	0.33	0.13	0.022	66.07	2376	0.12	0.13	0.2	0.15	<2	20	20	<0.5				
N171579	2.00	<0.05	<0.05	<0.05	<0.001	75.05	2099	0.02	0.02	0.2	0.03	<2	<10	10	<0.5				
N171580	1.41	14.85	44.5	13.25	3.258	73.18	1348.5	13.30	13.15	2.7	1.18	2	<10	20	<0.5				
N171581	1.59	2.30	7.56	2.12	0.410	54.22	1538.0	2.02	2.21	0.7	1.14	5	10	50	<0.5				
N171582	3.15	0.13	0.82	0.11	0.073	89.54	3086	0.10	0.12	<0.2	0.14	<2	<10	30	<0.5				
N171583	2.73	0.20	0.25	0.20	0.024	95.35	2660	0.20	0.20	<0.2	0.28	4	<10	20	<0.5				
N171584	3.31	0.69	1.49	0.66	0.155	103.80	3256	0.76	0.56	0.2	0.07	<2	<10	20	<0.5				
N171585	2.14	3.86	21.1	3.44	1.038	49.13	2044	3.49	3.39	0.9	0.11	3	<10	20	<0.5				
N171586	2.25	<0.05	0.32	<0.05	0.023	71.15	2200	0.02	0.03	<0.2	0.31	<2	<10	30	<0.5				

CERTIFICAT D'ANALYSE VO15167223															
Description échantillon	Méthode élément unités L.D.	ME-ICP41													
		Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mo ppm	Na %
NI71575	<2	0.12	<0.5	6	12	14	1.52	<10	<1	0.11	<10	0.19	233	<1	0.03
NI71576	<2	5.63	<0.5	30	15	120	7.46	<10	<1	0.08	<10	0.97	1550	11	0.02
NI71577	<2	0.29	<0.5	17	16	71	3.83	<10	<1	0.02	<10	0.06	810	2	0.05
NI71578	<2	1.94	<0.5	27	11	81	4.63	<10	<1	0.08	<10	0.64	638	1	0.02
NI71579	<2	0.04	0.5	3	15	23	1.17	<10	<1	0.01	<10	<0.01	307	1	0.03
NI71580	<2	1.78	<0.5	33	20	106	7.52	<10	<1	0.03	<10	0.73	1245	6	0.06
NI71581	<2	0.15	<0.5	51	19	69	9.66	<10	<1	0.08	10	0.26	2250	3	0.06
NI71582	<2	0.06	<0.5	3	8	13	1.43	<10	<1	0.04	<10	0.01	192	10	0.06
NI71583	<2	0.92	<0.5	4	17	8	2.22	<10	<1	0.06	<10	0.18	275	1	0.03
NI71584	<2	0.08	<0.5	3	15	73	1.47	<10	<1	0.03	<10	0.03	98	38	0.02
NI71585	<2	0.05	<0.5	10	15	24	2.56	<10	<1	0.06	<10	0.04	269	28	0.01
NI71586	<2	0.09	<0.5	9	17	70	2.85	<10	<1	0.08	<10	0.12	518	4	0.02

ALS Canada Ltd.
2103 Dartardon Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2
Télécopieur: +1 (604) 984 0218

minerals

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15167223

Description échantillon	Méthode élément L.D.	ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41	
		Ni ppm	P ppm	Sb ppm	S %	Sr ppm	Th ppm	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	ppm	ppm	ppm
NI171575	15	200	<2	<0.01	<2	1	9	<20	0.01	<10	7	<10	18		
NI171576	26	340	6	3.25	<2	6	134	<20	<0.01	<10	24	<10	47		
NI171577	15	200	14	0.78	<2	4	22	<20	<0.01	<10	21	<10	56		
NI171578	20	160	18	2.70	<2	3	120	<20	<0.01	<10	6	<10	48		
NI171579	4	50	18	0.11	<2	1	22	<20	<0.01	<10	1	<10	50		
NI171580	33	400	4	2.24	<2	10	28	<20	<0.01	<10	65	<10	72		
NI171581	39	440	4	1.59	2	12	13	<20	<0.01	<10	52	<10	73		
NI171582	2	260	5	0.19	<2	1	21	<20	<0.01	<10	2	<10	23		
NI171583	9	80	3	0.62	<2	1	31	<20	<0.01	<10	2	<10	8		
NI171584	3	20	8	0.40	<2	<1	19	<20	<0.01	<10	2	<10	6		
NI171585	14	60	<2	0.90	<2	1	6	<20	<0.01	<10	3	<10	5		
NI171586	13	360	<2	0.24	<2	2	8	<20	<0.01	<10	9	<10	25		

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15167223

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.

Au- AA25
CRU- 31
SCR- 21
Au- SCR21
CRU- QC
SPL- 34
Au- SCR21
LOG- 22
WEI- 21
BAG- 01
PUL- 21

Applique à la Méthode:
ME- ICP4 I

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada.

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: + 1 (604) 984 0221
www.alsglobal.com

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Télécopieur: + 1 (604) 984 0218
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Page: 1
Nombre total de pages: 3 (A)
plus les pages d'annexe
Finalisée date: 23- OCT- 2016
Compte: RESLUT

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI- 21	Poids échantillon reçu
CRU- QC	Test concassage QC
PUL- QC	Test concassage QC
LOG- 22	Entrée échantillon - Reçu sans code barre
CRU- 31	Granulation - 70 % < 2 mm
SPL- 21	Échant. fractionné - div. rifflés
PUL- 31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au- AA23	Au 30 g fini FA- AA
	AAS

CERTIFICAT SD16170876	
Projet: Monnexco	
Bon de commande #: MB16- 07	
Ce rapport s'applique aux 66 échantillons de roche soumis à notre laboratoire de Val	
d'Or, QC, Canada le 1- OCT- 2016.	
Les résultats sont transmis à:	
LUTSVISKY ADMINISTRATION	MARTIN DEMERS

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSWISKY INC.

C.P.18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

minerals

Page: 2 - A
Nombre total de pages: 3 (A)
plus les pages d'annexe
Finalisée date: 23- OCT- 2016
Compte: RESLUT

CERTIFICAT D'ANALYSE SD16170876			
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au- AA23 Au ppm
NI171951		2.15	<0.005
NI171952		2.96	<0.005
NI171953		2.96	<0.005
NI171954		2.56	<0.005
NI171955		1.96	<0.005
NI171956		2.86	0.005
NI171957		2.21	<0.005
NI171958		2.26	<0.005
NI171959		2.24	<0.005
NI171960		2.81	0.027
NI171961		1.36	0.006
NI171962		2.08	<0.005
NI171963		3.60	<0.005
NI171964		2.73	0.006
NI171965		2.53	0.035
NI171966		1.87	<0.005
NI171967		1.77	<0.005
NI171968		2.13	<0.005
NI171969		2.67	<0.005
NI171970		2.40	<0.005
NI171971		2.12	<0.005
NI171972		2.15	<0.005
NI171973		2.47	<0.005
NI171974		1.98	<0.005
NI171975		2.35	<0.005
NI171976		2.16	0.005
NI171977		2.44	0.016
NI171978		1.50	0.005
NI171979		2.16	0.010
NI171980		2.09	<0.005
NI171981		1.79	0.013
NI171982		1.88	<0.005
NI171983		1.70	<0.005
NI171984		1.84	<0.005
NI171985		1.56	<0.005
NI171986		1.80	<0.005
NI171987		2.25	<0.005
NI171988		1.80	<0.005
NI171989		3.13	<0.005
NI171990		1.84	<0.005

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Télécopieur: +1 (604) 984 0218
www.alsglobal.com

À: RESSOURCES LUTSWISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Page: 3 - A
Nombre total de pages: 3 (A)
plus les pages d'annexe
Finalisée date: 23-OCT-2016
Compte: RESLUT

minerals

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16170876

Description échantillon	Méthode unités L.D.	WEI-21 Poids reçu kg	Au- AA23 Au ppm	
NI71991		1.91	<0.005	
NI71992		1.90	<0.005	
NI71993		2.21	<0.005	
NI71994		1.92	0.744	
NI71995		2.17	0.762	
NI71996		1.72	0.012	
NI71997		2.48	<0.005	
NI71998		2.46	<0.005	
NI71999		2.44	<0.005	
NI72000		2.23	<0.005	
S280351		3.02	<0.005	
S280352		2.69	<0.005	
S280353		2.25	<0.005	
S280354		2.76	<0.005	
S280355		2.76	<0.005	
S280356		1.57	<0.005	
S280357		2.13	<0.005	
S280358		2.06	<0.005	
S280359		2.16	<0.005	
S280360		1.95	0.073	
S280361		2.25	<0.005	
S280362		1.99	<0.005	
S280363		1.80	0.005	
S280364		2.68	0.005	
S280365		1.65	0.005	
S280366		1.96	<0.005	

Télécopieur: +1 (604) 984 0218

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16170876

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Sudbury, 1351- B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.
CRU- QC
PUL- QC
SPL- 21

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.
Au- AA23

Applique à la Méthode:

CRU- 31

PUL- QC

Applique à la Méthode:

LOG- 22

WEI- 21

PUL- 31

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

Page: 1
Nombre total de pages: 2 (A)
plus les pages d'annexe
Finalisée date: 24- OCT- 2016
Compte: RESLUT

CERTIFICAT SD16175604

Projet: Monnexco
Bon de commande #: MB16- 07
Ce rapport s'applique aux 23 échantillons de carotte forage soumis à notre
laboratoire de Sudbury, ON, Canada le 1- OCT- 2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
CRU- QC	Test concassage QC
PUL- QC	Test concassage QC
LOG- 22	Entrée échantillon - Reçu sans code barre
CRU- 31	Granulation - 70 % < 2 mm
SPL- 21	Échant. fractionné- div. riffles
PUL- 31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au- AA23	Au 30 g fini FA- AA
	AAS

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent
aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2
Télécopieur: +1 (604) 984 0218

minerals

Compte: RESLUT

Page: 2 - A
Nombre total de pages: 2 (A)
plus les pages d'annexe
Finalisée date: 24-OCT-2016

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16175604

Description échantillon	Méthode élément unités L.D.	WEI 21 Poids reçu kg	Au AA23 Au ppm
S280367		2.37	0.022
S280368		2.09	0.007
S280369		3.13	<0.005
S280370		3.17	<0.005
S280371		2.55	<0.005
S280372		2.66	0.013
S280373		2.62	0.024
S280374		3.12	0.050
S280375		2.54	0.126
S280376		1.77	<0.005
S280377		2.13	<0.005
S280378		2.44	<0.005
S280379		1.58	0.016
S280380		2.54	<0.005
S280381		2.38	<0.005
S280382		2.07	<0.005
S280124		2.14	1.760
S280125		2.94	<0.005
S280126		2.09	<0.005
S280127		2.46	<0.005
S280128		1.50	<0.005
S280129		2.25	<0.005
S280130		3.30	<0.005

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2
Télécopieur: +1 (604) 984 0218

Page: Annexe 1
Total # les pages d'annexe: 1
Finalisée date: 24- OCT- 2016
Compte: RESLUT

minerals

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16175604

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Sudbury, 1351- B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.
CRU- QC
PUL- QC
SPL- 21
LOG- 22
WEI- 21

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada.
Au- AA23

Applique à la Méthode:

CRU- 31

PUL- QC

Applique à la Méthode:

Au- AA23

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

minerals

CERTIFICAT VO16096442

Projet: Monnexco

Bon de commande #: MB16-07

Ce rapport s'applique aux 73 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 17-JUIN-2016.

Les résultats sont transmis à:

LUTSVISKY ADMINISTRATION

MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS

CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
LOG-22	Entrée échantillon - Recu sans code barre
CRU-31	Granulation - 70 % < 2 mm
SPL-21	Échant. fractionné - div. riffles
PUL-31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES

CODE ALS	DESCRIPTION
Au-AA23	Au 30 g fini FA-AA
Au-GRA21	Au 30 g fini FA-GRAV

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Page: 1
Nombre total de pages: 3 (A)
plus les pages d'annexe
Finalisée date: 9-JUIL- 2016
Compte: RESLUT

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2
Télécopieur: +1 (604) 984 0218

minerals

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Page: 2 - A
Nombre total de pages: 3 (A)
plus les pages d'annexe
Finalisée date: 9- JUIL- 2016
Compte: RESLUT

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16096442

Description échantillon	Méthode élément unités L.D.	WEI 21 Poids reçu kg	Au- AA23 Au ppm	Au- GRA21 Au ppm
S279701		1.68	0.780	
S279702		2.28	0.045	
S279703		2.38	0.884	
S279704		2.19	0.544	
S279705		2.32	1.015	
S279706		2.73	0.042	
S279707		1.68	0.009	
S279708		2.25	<0.005	
S279709		2.06	0.093	
S279710		2.29	0.416	
S279711		2.61	0.187	
S279712		3.29	0.030	
S279713		3.27	0.038	
S279714		2.33	0.067	
S279715		2.40	0.034	
S279716		2.53	0.018	
S279717		3.33	0.005	
S279718		1.76	<0.005	
S279719		2.82	0.007	
S279720		2.19	<0.005	
S279721		3.19	<0.005	
S279722		2.17	0.009	
S279723		2.58	0.305	
S279724		1.70	0.133	
S279725		1.68	<0.005	
S279758		2.84	<0.005	
S279759		2.60	2.59	
S279760		3.56	0.846	
S279761		2.33	<0.005	
S279762		3.11	0.007	
S279763		2.96	<0.005	
S279764		2.77	1.140	
S279765		2.61	0.117	
S279766		2.19	0.562	
S279767		3.28	0.068	
S279768		2.89	2.69	
S279769		4.37	0.151	
S279770		3.41	0.359	
S279771		2.26	4.89	
S279772		2.67	0.660	

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

A: RESSOURCES LUTSVISKY INC.

C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

ALS
minerals

Project: Monnexco

CERTIFICAT D'ANALYSE VO16096442

Description échantillon	Méthode élément unités L.D.	WEI 21	Poids reçu kg	Au-AA23 Au ppm	Au-GRA21 Au ppm
S279773		2.93	3.17		
S279774		3.15	1.955		
S279775		2.15	0.710		
S279776		2.17	0.953		
S279777		2.15	0.014		
S279778		2.91	0.016		
S279779		2.74	<0.005		
S279780		2.49	0.010		
S279781		2.65	<0.005		
S279782		2.57	<0.005		
S279783		2.40	<0.005		
S279784		2.11	0.009		
S279785		3.26	0.188		
S279786		2.07	1.070		
S279787		2.42	0.056		
S279788		2.91	0.018		
S279789		3.29	0.434		
S279790		2.74	0.092		
S279791		3.13	0.005		
S279792		2.27	0.102		
S279793		1.84	0.603		
S279794		2.13	0.073		
S279795		2.49	0.007		
S279796		2.20	<0.005		
S279797		2.07	0.024		
S279832		2.63	0.136		
S279833		2.29	0.008		
S279834		2.19	0.068		
S279835		2.35	6.57		
S279836		2.71	0.249		
S279837		1.75	>10.0	10.35	
S279838		1.84	0.020		
S279839		2.33	0.505		

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

CERTIFICAT VO16123784

Projet: Monnexco
Bon de commande #: MB16- 07
Ce rapport s'applique aux 56 échantillons de roche soumis à notre laboratoire de Val
d'Or, QC, Canada le 28-JUIL- 2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
CRU- QC	Test concassage QC
PUL- QC	Test concassage QC
LOG-22	Entrée échantillon - Reçu sans code barre
CRU-31	Granulation - 70 % < 2 mm
SPL- 21	Échant. fractionné - div. ruffles
PUL- 31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au- AA23	Au 30 g fini FA- AA
Au- GRA21	Au 30 g fini FA- GRAV

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: Nacera Amara
Nacera Amara, Laboratory Manager, Val d'Or

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16123784

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au-GRA21 Au ppm
S280401		3.38	0.014	0.05
S280402		2.68	0.009	
S280403		3.46	0.005	
S280404		4.29	0.765	
S280405		3.32	0.005	
S280406		3.57	<0.005	
S280407		2.62	0.006	
S280408		3.66	0.026	
S280409		3.37	0.118	
S280410		2.93	2.21	
S280411		1.66	0.110	
S280412		1.90	>10.0	17.45
S280413		2.66	0.020	
S280414		2.71	>10.0	18.60
S280415		2.25	0.067	
S280416		3.68	0.014	
S280417		1.92	0.015	
S280418		3.39	0.005	
S280419		2.54	0.013	
S280420		2.90	<0.005	
S280421		1.72	<0.005	
S280422		3.76	0.007	
S280423		2.19	0.219	
S280424		3.48	2.71	
S280425		2.87	0.370	
S280426		2.81	0.112	
S280427		2.12	0.206	
S280428		3.17	0.737	
S280429		2.87	0.348	
S280430		2.13	0.060	
S280431		3.39	0.174	
S280432		3.72	0.915	
S280433		2.56	0.105	
S280434		2.41	0.600	
S280435		2.46	0.322	
S280436		2.04	0.018	
S280437		2.82	<0.005	
S280438		2.77	<0.005	
S280439		2.91	<0.005	
S280440		2.38	<0.005	

CERTIFICAT D'ANALYSE VO16123784

Description échantillon	Méthode élément unités L.D.	WEI- 21 Poids reçu kg	Au- AA23 Au ppm	Au- GRA21 Au ppm
S280441		2.86	<0.005	
S280442		3.10	<0.005	
S280443		1.95	0.006	
S279688		2.24	0.303	
S279689		2.16	0.022	
S279690		1.29	0.015	
S279691		0.90	0.333	
S279692		4.60	0.035	
S279693		3.21	0.012	
S280444		2.35	<0.005	
S280445		2.05	0.014	
S280446		3.22	1.375	
S280447		2.51	2.27	
S280448		1.81	1.200	
S280449		2.81	7.54	
S280450		3.36	0.579	

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: + 1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: + 1 (604) 984 0218

Page: Annexe 1
Total # les pages d'annexe: 1
Finalisée date: 9-AOUT- 2016
Compte: RESLUT

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16123784

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.
AU-AA23
LOG-22
WEI-21

Applique à la Méthode:

CRU-31
PUL-QC
SPL-21

CERTIFICAT VO15165444

Projet: MONEXCO

Ce rapport s'applique aux 50 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 28- OCT- 2015.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | DAVID MCDONALD


À: RESSOURCES LUTSVISKY INC.
ATTN: LUTSVISKY ADMINISTRATION
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

CERTIFICAT D'ANALYSE VO15165444													
Description échantillon	WEI-21	Au-Au23	ME-ICP41										
Méthode élément unités L.D.	Poids requi kg	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Cr ppm	Cu ppm	Fe %
N171751	1.72	<0.005	<0.2	4.47	<2	<10	20	<0.5	2	1.15	<0.5	44	42
N171752	2.12	<0.005	<0.2	1.24	<2	<10	10	<0.5	<2	0.93	<0.5	12	24
N171753	1.71	<0.005	<0.2	1.40	<2	<10	10	<0.5	2	1.35	<0.5	13	26
N171754	1.97	0.006	<0.2	0.52	<2	<10	20	<0.5	<2	1.06	<0.5	4	15
N171755	1.49	<0.005	<0.2	4.59	<2	<10	20	<0.5	3	0.68	<0.5	41	541
N171756	2.20	<0.005	0.2	4.01	2	<10	340	<0.5	4	1.16	<0.5	30	23
N171757	2.13	<0.005	<0.2	3.83	<2	<10	100	<0.5	3	1.21	<0.5	46	21
N171758	2.34	<0.005	<0.2	2.71	<2	<10	20	<0.5	<2	1.17	<0.5	35	45
N171759	1.93	<0.005	0.3	3.76	4	10	10	<0.5	2	1.62	<0.5	56	43
N171760	1.45	<0.005	<0.2	0.35	<2	<10	70	<0.5	<2	0.52	<0.5	4	3
N171761	1.74	<0.005	<0.2	2.76	<2	<10	10	<0.5	2	1.06	<0.5	20	20
N171762	2.35	<0.005	<0.2	3.36	<2	<10	20	<0.5	4	1.13	<0.5	50	34
N171763	3.83	<0.005	<0.2	1.69	<2	<10	10	<0.5	2	0.66	<0.5	19	78
N171764	2.11	<0.005	<0.2	1.83	2	<10	10	<0.5	<2	4.55	<0.5	24	24
N171765	1.82	0.063	<0.2	3.04	<2	<10	10	<0.5	3	1.10	<0.5	42	37
N171766	2.82	0.073	<0.2	3.13	<2	<10	10	<0.5	2	1.21	<0.5	41	40
N171767	2.06	<0.005	<0.2	0.25	<2	<10	250	<0.5	<2	0.78	<0.5	1	4
N171768	2.67	<0.005	<0.2	0.30	<2	<10	620	<0.5	<2	1.14	<0.5	2	3
N171769	2.50	0.132	<0.2	3.20	3	<10	40	<0.5	3	0.96	<0.5	40	30
N171770	2.57	<0.005	<0.2	4.48	<2	<10	20	<0.5	2	0.72	<0.5	55	46
N171771	2.00	0.202	<0.2	2.96	4	<10	30	<0.5	2	5.54	<0.5	57	39
N171772	2.59	0.359	0.2	2.42	<2	<10	20	<0.5	3	4.18	<0.5	37	36
N171773	3.08	0.151	<0.2	2.86	7	<10	20	<0.5	2	7.01	<0.5	61	38
N171774	2.19	<0.005	<0.2	2.83	<2	<10	30	<0.5	2	1.04	<0.5	26	54
N171775	3.08	<0.005	<0.2	3.37	2	<10	60	<0.5	2	1.78	<0.5	45	124
N171776	3.00	<0.005	<0.2	2.77	2	<10	10	<0.5	2	2.14	<0.5	25	27
N171777	1.94	<0.005	<0.2	0.67	<2	<10	10	<0.5	<2	0.27	<0.5	7	21
N171778	1.74	0.015	0.4	1.63	<2	<10	20	<0.5	<2	0.46	0.8	31	15
N171779	2.26	0.008	<0.2	0.60	<2	<10	60	<0.5	<2	0.33	<0.5	5	18
N171780	2.14	<0.005	<0.2	3.97	<2	<10	10	<0.5	2	4.35	<0.5	41	48
N171781	1.98	0.010	<0.2	3.02	<2	<10	20	<0.5	<2	1.89	<0.5	43	44
N171782	2.30	<0.005	<0.2	3.03	<2	<10	30	<0.5	4	1.24	<0.5	44	59
N171783	2.77	<0.005	<0.2	0.48	<2	<10	10	<0.5	<2	0.49	<0.5	7	15
N171784	2.34	<0.005	<0.2	0.49	<2	<10	10	<0.5	<2	0.25	<0.5	7	17
N171785	2.20	<0.005	<0.2	5.58	<2	<10	10	<0.5	3	0.53	<0.5	47	256
N171786	2.53	<0.005	<0.2	3.13	<2	<10	10	<0.5	4	0.96	<0.5	31	34
N171787	1.60	<0.005	<0.2	1.81	2	<10	20	<0.5	2	0.30	<0.5	21	20
N171788	2.51	<0.005	<0.2	1.52	<2	<10	20	<0.5	2	1.12	<0.5	27	25
N171789	1.89	<0.005	0.2	2.83	<2	<10	50	<0.5	4	1.78	0.5	48	36
N171790	2.64	<0.005	<0.2	1.20	<2	<10	20	<0.5	<2	0.45	<0.5	24	20

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

CERTIFICAT D'ANALYSE VO15165444

Description échantillon	Méthode élément unités L.D.	ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41			ME-ICP41		
		ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K %	ME-ICP41 La ppm 10	ME-ICP41 Mg %	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na %	ME-ICP41 Ni ppm 1	ME-ICP41 Pb ppm 10	ME-ICP41 S %	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1		
N171751	20	<1	0.09	<10	2.66	1565	<1	0.01	47	780	<2	0.03	<2	19	14				
N171752	10	<1	0.03	<10	0.70	577	1	0.01	15	250	<2	0.03	<2	6	21				
N171753	10	<1	0.02	<10	0.70	656	<1	0.01	18	230	<2	0.02	<2	6	35				
N171754	<10	<1	0.03	<10	0.08	403	<1	0.01	6	90	<2	0.04	<2	2	55				
N171755	20	1	0.10	20	4.72	1255	<1	0.01	282	2570	<2	<0.01	<2	6	28				
N171756	20	<1	0.70	<10	1.78	1285	7	0.02	19	810	4	0.33	<2	33	17				
N171757	20	1	0.22	<10	1.57	1310	<1	0.06	22	850	3	0.51	2	15	22				
N171758	10	<1	0.07	<10	1.49	900	<1	0.02	34	590	2	0.13	<2	4	32				
N171759	10	<1	0.07	<10	2.47	1235	3	0.02	58	640	2	0.31	<2	6	22				
N171760	<10	<1	0.10	10	0.10	182	<1	0.04	4	690	6	0.38	<2	<1	25				
N171761	10	<1	0.01	<10	1.00	1405	<1	0.01	19	340	<2	0.08	<2	12	4				
N171762	20	<1	0.10	<10	1.48	1345	<1	0.02	43	710	<2	0.06	<2	10	25				
N171763	<10	<1	0.02	<10	1.53	375	<1	0.03	38	140	<2	0.02	<2	2	17				
N171764	<10	<1	0.02	<10	1.79	650	<1	0.03	43	140	<2	0.02	<2	2	14				
N171765	10	<1	<0.01	<10	3.07	1135	<1	0.02	41	320	<2	<0.01	2	13	61				
N171766	10	1	0.01	<10	3.20	1240	<1	0.02	42	320	2	0.01	<2	21	46				
N171767	<10	<1	0.14	10	0.05	177	<1	0.04	1	250	<2	0.02	<2	<1	30				
N171768	<10	<1	0.16	<10	0.09	211	<1	0.03	1	240	<2	0.05	<2	<1	47				
N171769	10	1	0.05	<10	2.74	799	<1	0.01	39	280	<2	0.28	2	7	34				
N171770	20	<1	0.03	<10	4.30	1370	<1	0.01	49	260	<2	<0.01	2	13	61				
N171771	10	<1	0.04	<10	3.03	1425	3	0.02	37	320	<2	1.86	<2	15	71				
N171772	10	<1	0.03	<10	2.28	1065	1	0.02	36	290	3	0.22	<2	9	86				
N171773	10	<1	0.03	<10	2.89	1580	3	0.02	40	350	2	2.37	<2	14	89				
N171774	10	<1	0.03	10	1.99	1100	<1	0.03	39	600	2	0.11	<2	14	12				
N171775	10	<1	0.09	<10	1.54	1655	1	0.03	120	410	2	0.14	<2	11	16				
N171776	10	<1	0.02	<10	1.48	1195	2	<0.01	25	420	<2	0.46	<2	14	29				
N171777	<10	<1	0.02	<10	0.32	388	1	0.01	8	160	<2	0.06	<2	3	5				
N171778	<10	1	0.10	10	0.60	351	4	0.05	45	660	4	0.53	<2	2	18				
N171779	<10	<1	0.08	30	0.28	147	<1	0.05	5	700	4	0.12	<2	1	43				
N171780	10	<1	0.01	<10	3.23	1015	<1	0.01	75	360	<2	0.03	<2	14	25				
N171781	10	<1	0.02	<10	0.94	1430	<1	0.02	58	530	2	0.12	<2	9	11				
N171782	20	<1	0.15	<10	1.64	1535	<1	0.03	54	590	2	0.07	<2	32	17				
N171783	<10	<1	0.04	<10	0.15	323	1	0.01	10	130	<2	0.09	<2	3	5				
N171784	<10	<1	0.02	<10	0.14	311	2	0.01	9	320	<2	0.08	<2	3	3				
N171785	10	<1	0.02	<10	5.33	1130	<1	0.01	132	350	<2	0.01	<2	19	5				
N171786	10	<1	0.04	<10	1.75	921	<1	0.03	42	630	2	0.05	<2	4	21				
N171787	10	<1	0.05	<10	0.54	890	<1	0.02	22	330	<2	0.01	<2	8	6				
N171788	10	<1	0.09	<10	0.34	641	1	0.03	30	560	2	0.14	<2	5	23				
N171789	10	<1	0.21	<10	0.75	1325	3	0.06	63	770	4	0.24	<2	10	38				
N171790	<10	<1	0.08	<10	0.31	658	3	0.03	25	450	<2	0.20	<2	6	13				

CERTIFICAT D'ANALYSE VO15165444

Description échantillon	Méthode élément unités L.D.	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2
NI171751	<20	0.48	<10	<10	272	<10	13.8
NI171752	<20	0.18	<10	<10	82	<10	43
NI171753	<20	0.22	<10	<10	113	<10	43
NI171754	<20	0.10	<10	<10	42	<10	28
NI171755	<20	0.19	<10	<10	142	<10	16.9
NI171756	<20	0.45	<10	<10	355	<10	17.1
NI171757	<20	0.38	<10	<10	244	<10	14.9
NI171758	<20	0.37	<10	<10	107	<10	85
NI171759	<20	0.40	<10	<10	158	<10	12.1
NI171760	<20	0.05	<10	<10	4	<10	16
NI171761	<20	0.21	<10	<10	157	<10	10.7
NI171762	<20	0.49	<10	<10	256	<10	14.8
NI171763	<20	0.14	<10	<10	43	<10	29
NI171764	<20	0.14	<10	<10	56	<10	38
NI171765	<20	0.19	<10	<10	178	<10	34
NI171766	<20	0.20	<10	<10	212	<10	9.5
NI171767	<20	<0.01	<10	<10	2	<10	4
NI171768	<20	<0.01	<10	<10	2	<10	8
NI171769	<20	0.25	<10	<10	138	<10	7.4
NI171770	<20	0.25	<10	<10	240	<10	9.9
NI171771	<20	0.14	<10	<10	132	<10	8.2
NI171772	<20	0.20	<10	<10	144	<10	6.4
NI171773	<20	0.12	<10	<10	126	<10	7.9
NI171774	<20	0.11	<10	<10	136	<10	6.8
NI171775	<20	0.15	<10	<10	146	<10	7.2
NI171776	<20	0.04	<10	<10	134	<10	8.4
NI171777	<20	0.01	<10	<10	40	<10	20
NI171778	<20	0.12	<10	<10	26	<10	21.7
NI171779	<20	0.12	<10	<10	12	<10	3.7
NI171780	<20	0.19	<10	<10	177	<10	8.4
NI171781	<20	0.07	<10	<10	174	<10	9.6
NI171782	<20	0.15	<10	<10	316	<10	15.2
NI171783	<20	0.07	<10	<10	52	<10	3.1
NI171784	<20	0.03	<10	<10	46	<10	2.8
NI171785	<20	0.33	<10	<10	233	<10	12.4
NI171786	<20	0.45	<10	<10	123	<10	10.0
NI171787	<20	0.07	<10	<10	115	<10	7.3
NI171788	<20	0.14	<10	<10	118	<10	7.6
NI171789	<20	0.23	<10	<10	234	<10	18.0
NI171790	<20	0.13	<10	<10	106	<10	6.4



minerals

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO1516544

Description échantillon	Méthode élément unités L.D.	WEI-21	Au-AA23	ME-ICP41										
		Poids reçu kg	Au ppm	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm
N171791	3.18	<0.005	<0.2	0.60	<2	<10	10	<0.5	<2	0.67	<0.5	8	19	16
N171792	2.66	<0.005	0.2	3.28	<2	<10	40	0.5	2	1.81	<0.5	45	39	64
N171793	2.92	<0.005	<0.2	1.04	<2	<10	20	<0.5	<2	1.23	<0.5	13	19	24
N171794	1.87	<0.005	<0.2	0.46	<2	<10	10	<0.5	<2	1.55	<0.5	6	15	22
N171795	2.26	<0.005	<0.2	0.82	<2	<10	10	<0.5	<2	0.91	<0.5	12	18	34
N171796	3.03	<0.005	<0.2	0.59	<2	<10	10	<0.5	2	0.78	<0.5	9	15	15
N171797	3.16	<0.005	0.3	2.63	<2	<10	60	<0.5	3	6.30	0.5	44	28	85
N171798	2.05	<0.005	<0.2	4.20	2	<10	10	<0.5	2	3.98	<0.5	43	159	74
N171799	3.45	<0.005	0.5	0.34	230	<10	10	<0.5	3	0.09	<0.5	24	6	41
N171800	2.65	0.005	<0.2	3.89	<2	<10	10	<0.5	3	11.4	<0.5	37	118	100

Télécopieur: +1 (604) 984 02 8

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165444

Description échantillon	Méthode élément unités L.D.	ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41	
		Ga ppm	Hg ppm	Mg ppm	La %	Mn ppm	Na %	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm			
N171791	<10	<1	0.03	<10	0.18	497	3	0.02	10	460	<2	0.11	<2	4	7
N171792	10	<1	0.14	<10	0.80	1430	2	0.07	55	720	2	0.13	<2	18	24
N171793	10	<1	0.06	<10	0.33	640	3	0.01	16	650	<2	0.10	<2	6	10
N171794	<10	<1	0.02	<10	0.13	343	1	0.01	9	250	<2	0.17	<2	3	8
N171795	<10	<1	0.04	<10	0.26	461	3	0.01	16	310	<2	0.17	<2	3	9
N171796	<10	<1	0.02	<10	0.18	303	1	0.01	13	180	2	0.14	<2	2	5
N171797	10	<1	0.47	<10	1.16	1255	19	0.03	41	580	4	0.72	<2	15	73
N171798	10	<1	0.03	<10	3.44	1600	<1	0.01	83	230	<2	0.03	<2	15	13
N171799	<10	<1	0.03	<10	0.28	178	<1	0.02	21	100	24	>10.0	2	1	9
N171800	10	<1	0.04	<10	3.14	1670	<1	0.01	64	180	<2	0.09	<2	10	32

Télécopieur: +1 (604) 984 0218

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165444

Description échantillon	Méthode unités L.D.	ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41		ME-ICP41	
		Th ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	ppm	ppm	ppm
N171791	<20	0.09	<10	<10	<10	53	<10	37			
N171792	<20	0.33	<10	<10	<10	249	<10	180			
N171793	<20	0.11	<10	<10	<10	88	<10	66			
N171794	<20	0.02	<10	<10	<10	41	<10	30			
N171795	<20	0.06	<10	<10	<10	79	<10	47			
N171796	<20	0.03	<10	<10	<10	65	<10	40			
N171797	<20	0.38	<10	<10	<10	215	<10	136			
N171798	<20	0.30	<10	<10	<10	160	<10	94			
N171799	<20	0.02	<10	<10	<10	6	<10	43			
N171800	<20	0.22	<10	<10	<10	124	<10	83			

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221

www.alsglobal.com

Projet: MONEXCO

CERTIFICAT D'ANALYSE VO15165444

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.

Au- AA23
PUL- 31

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada.
ME- ICP41

Applique à la Méthode:

CRU- 31
PUL- QC

Applique à la Méthode:

LOG- 22
WEI- 21

CERTIFICAT SD16170884

Projet: Monnexco
Bon de commande #: MB16- 07
Ce rapport s'applique aux 50 échantillons de roche soumis à notre laboratoire de Val
d'Or, QC, Canada le 1- OCT- 2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI- 21	Poids échantillon reçus
CRU- QC	Test concassage QC
PUL- QC	Test concassage QC
LOG- 22	Entrée échantillon - Recu sans code barre
CRU- 31	Granulation - 70 % < 2 mm
SPL- 21	Échant. fractionné - div. rifflles
PUL- 31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au- AA23	Au 30 g fini FA- AA
	AAS

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent
aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Nacera Amara
Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: + 1 (604) 984 0221
www.alsglobal.com

ALS
minerals

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16170884

Description échantillon	Méthode élément unités L.D.	WEI 21 Poids reçu kg	Au-AA23 Au ppm	0.005
NI172201		2.38	<0.005	
NI172202		2.17	0.006	
NI172203		1.98	<0.005	
NI172204		3.17	<0.005	
NI172205		2.27	<0.005	
NI172206		2.26	0.163	
NI172207		1.96	0.112	
NI172208		2.83	<0.005	
NI172209		2.66	0.006	
NI172210		2.41	<0.005	
NI172211		2.14	3.53	
NI172212		2.76	0.094	
NI172213		2.67	0.023	
NI172214		2.35	0.012	
NI172215		1.93	0.041	
NI172216		2.18	<0.005	
NI172217		2.08	<0.005	
NI172218		2.22	0.011	
NI172219		2.52	<0.005	
NI172220		2.32	<0.005	
NI172221		4.06	0.148	
NI172222		2.48	<0.005	
NI172223		2.11	0.150	
NI172224		2.33	<0.005	
NI172225		2.66	0.006	
NI172226		2.15	<0.005	
NI172227		1.41	<0.005	
NI172228		1.99	0.012	
NI172229		2.74	<0.005	
NI172230		2.36	<0.005	
NI172231		2.29	<0.005	
NI172232		2.04	0.032	
NI172233		1.88	0.009	
NI172234		1.80	<0.005	
NI172235		1.67	<0.005	
NI172236		1.61	<0.005	
NI172237		2.31	0.084	
NI172238		1.81	0.033	
NI172239		2.06	0.015	
NI172240		2.06	0.012	

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Télécopieur: +1 (604) 984 0218

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16170884

Description échantillon	Méthode élément unités L.D.	WEI-21	Au-AA23
		Poids reçu kg	Au ppm
N172241		1.88	<0.005
N172242		2.60	0.046
N172243		2.75	0.013
N172244		2.43	<0.005
N172245		1.72	<0.005
N172246		2.05	0.007
N172247		2.25	0.037
N172248		3.35	0.285
N172249		3.06	1.740
N172250		2.35	2.25

Projet: Monnexco

CERTIFICAT D'ANALYSE SD16170884

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

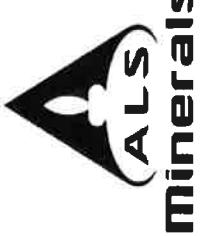
Traité à ALS Sudbury, 1351- B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.
CRU- QC
PUL- QC
SPL- 21

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.
Au- AA23

Applique à la Méthode:

PUU- 31

LOG- 22


WEI- 21

Applique à la Méthode:

PUU- 31

LOG- 22

WEI- 21

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

Page: 1
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 29- JUIN- 2016
Compte: RESLUT

CERTIFICAT VO16090043

Projet: Monnexco
Bon de commande #: MB16-07
Ce rapport s'applique aux 125 échantillons de roche soumis à notre laboratoire de
Val d'Or, QC, Canada le 7-JUIN- 2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
LOG-22	Entrée échantillon - Recu sans code barre
CRU-31	Granulation - 70 % <2 mm
SPL-21	Échant. fractionné - div. ruffles
PUL-31	Pulvérisé à 85 % <75 um

PROCÉDURES ANALYTIQUES

CODE ALS	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30 g fini FA-AA	AAS
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: Nacera Amara
Nacera Amara, Laboratory Manager, Val d'Or

CERTIFICAT D'ANALYSE VO16090043

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au-GRA21 Au ppm
S279751		2.68	0.130	
S279752		3.11	<0.005	
S279753		2.78	0.007	
S279754		2.76	0.006	
S279755		2.20	0.015	
S279756		1.92	0.006	
S279757		1.34	<0.005	
S279801		1.83	0.010	
S279802		2.47	0.010	
S279803		1.80	0.012	
S279804		1.53	0.007	
S279805		2.33	0.005	
S279806		1.63	0.005	
S279807		2.48	0.007	
S279808		1.96	0.025	
S279809		2.25	0.016	
S279810		2.22	<0.005	
S279811		2.31	0.007	
S279812		2.10	0.007	
S279813		2.37	<0.005	
S279814		2.06	0.006	
S279815		1.85	<0.005	
S279816		2.04	>10.0	18.80
S279817		2.37	0.011	
S279818		3.11	3.00	
S280451		2.28	0.017	
S280452		2.58	<0.005	
S280453		2.39	<0.005	
S280454		2.63	<0.005	
S280455		2.01	<0.005	
S280456		1.77	<0.005	
S280457		1.73	0.007	
S280458		2.09	0.005	
S280459		2.64	0.010	
S280460		2.02	<0.005	
S280461		1.88	<0.005	
S280462		1.98	<0.005	
S280463		2.82	<0.005	
S280464		1.83	<0.005	
S280465		1.69	<0.005	

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2
Télécopieur: +1 (604) 984 0218

Page: 3 - A
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 29-JUIN-2016
Compte: RESLUT

minerals

Projet: Monnexco

CERTIFICAT D'ANALYSE VO160900043

Description échantillon	Méthode élément L.D.	WEI-21	Au-AA23	Au-GRA21
		Poids reçu kg	Au ppm	Au ppm
S280466		1.86	<0.005	
S280467		1.48	<0.005	
S280468		1.57	<0.005	
S280469		2.35	0.008	
S280470		2.24	0.005	
S280471		2.36	0.896	
S280472		2.03	<0.005	
S280473		2.54	<0.005	
S280474		2.48	0.022	
S280475		2.65	0.088	
S280476		1.70	0.012	
S280477		2.27	0.023	
S280478		1.53	0.007	
S280479		1.29	0.009	
S280480		1.91	<0.005	
S280481		2.61	0.036	
S280482		2.38	>10.0	18.50
S280483		1.61	3.73	
S280484		1.68	>10.0	81.8
S280485		1.55	>10.0	29.1
S280486		1.47	0.360	
S280487		2.02	0.032	
S280488		2.30	0.019	
S280489		1.92	<0.005	
S280490		2.12	0.006	
S280491		2.02	0.067	
S280492		2.81	0.258	
S280493		2.44	2.92	
S280494		2.74	0.016	
S280495		3.05	1.680	
S280496		2.92	4.54	
S280497		3.54	6.53	
S280498		3.01	>10.0	19.75
S280499		3.78	>10.0	54.7
S280500		4.56	>10.0	14.75
S279501		2.63	0.017	
S279502		2.64	0.976	
S279503		2.70	<0.005	
S279504		2.35	0.025	
S279505		2.89	0.010	

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.

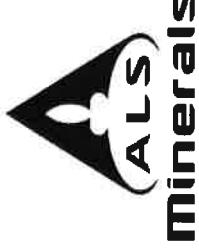
2103 Dollartron Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

minerals

Page: 4 - A
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 29-JUIN- 2016
Compte: RESLUT


Projet: Monnexco

CERTIFICAT D'ANALYSE VO16090043

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au-GRA21 Au ppm
S279506		2.83	<0.005	
S279507		2.13	0.017	
S279508		2.66	0.148	
S279509		2.81	0.052	
S279510		2.96	0.046	
S279511		2.84	0.017	
S279512		2.06	0.026	
S279513		3.36	0.380	
S279514		2.89	0.008	
S279515		3.21	0.320	
S279516		3.08	0.105	
S279517		4.27	0.670	
S279518		3.71	1.320	
S279519		2.39	0.123	
S279520		2.09	<0.005	
S279521		1.91	0.569	
S279522		2.03	9.77	
S279523		1.78	0.009	
S279524		1.87	9.46	
S279525		2.28	0.019	
S279526		1.80	0.287	
S279527		2.27	0.827	
S279528		2.09	0.014	
S279529		2.52	0.009	
S279530		2.03	<0.005	
S279531		2.59	0.609	
S279532		2.40	0.005	
S279533		2.41	0.008	
S279534		2.60	0.019	
S279535		2.01	0.007	
S279536		2.31	0.825	
S279537		2.05	0.015	
S279538		2.59	0.018	
S279539		2.38	<0.005	
S279540		2.85	0.018	
S279541		3.00	0.021	
S279542		2.54	1.925	
S279543		2.29	0.199	
S279544		2.57	0.016	
S279545		1.98	0.077	

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

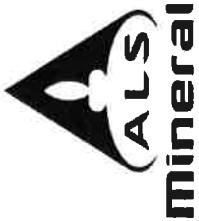
Page: 5 - A
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 29-JUIN-2016
Compte: RESLUT

CERTIFICAT D'ANALYSE VO16090043					
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg	Au-AA23 Au ppm	Au-GRA21 Au ppm	
S279546		2.82	0.020		
S279547		2.70	0.898		
S279548		3.02	6.49		
S279549		1.90	5.05		
S279550		2.53	0.023		

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16090043

COMMENTAIRE DE CERTIFICAT


ADRESSE DE LABORATOIRE

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.
Au-AA23
LOG-22
WEI-21

Applique à la Méthode:

CRU-QC
SPL-21

CRU-31
PUL-QC

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2
Télécopieur: +1 (604) 984 0218

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Page: 1
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 18-JUIL- 2016
Compte: RESLUT

CERTIFICAT VO16098335

Projet: Monnexco
Bon de commande #: MB16- 07
Ce rapport s'applique aux 124 échantillons de roche soumis à notre laboratoire de
Val d'Or, QC, Canada le 21-JUIN- 2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçus
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
LOG-22	Entrée échantillon - Recu sans code barre
CRU-31	Granulation - 70 % <2 mm
SPL-21	Échant. fractionné - div. riffles
PUL-31	Pulverisé à 85 % <75 um

PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION
Au- AA23	INSTRUMENT Au 30 g fini FA- AA AAS

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent
aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

CERTIFICAT D'ANALYSE VO16098335					
Description échantillon	Méthode élément L.D.	WE# 21	Au-AA23	Poids reçu	Au
				kg	ppm
S279551		2.46	<0.005	0.02	0.005
S279552		1.93	0.006		
S279553		2.29	0.008		
S279554		2.25	0.015		
S279555		2.30	<0.005		
S279556		2.22	<0.005		
S279557		2.40	0.005		
S279558		1.84	0.012		
S279559		3.17	<0.005		
S279560		1.43	<0.005		
S279561		1.38	<0.005		
S279562		1.80	0.007		
S279563		1.92	<0.005		
S279564		2.01	0.020		
S279565		1.67	0.005		
S279566		2.63	<0.005		
S279567		2.02	<0.005		
S279568		2.41	<0.005		
S279569		2.11	<0.005		
S279570		2.25	<0.005		
S279571		2.10	0.068		
S279572		2.27	0.031		
S279573		1.93	1.230		
S279574		1.78	<0.005		
S279575		1.84	<0.005		
S279576		2.68	0.005		
S279577		2.13	<0.005		
S279578		1.63	0.005		
S279579		1.58	<0.005		
S279580		2.27	0.005		
S279581		1.95	<0.005		
S279582		2.27	<0.005		
S279583		2.87	<0.005		
S279584		2.20	<0.005		
S279585		1.75	<0.005		
S279586		1.76	<0.005		
S279587		2.21	<0.005		
S279588		2.19	<0.005		
S279589		2.62	0.074		
S279590		2.30	0.009		

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

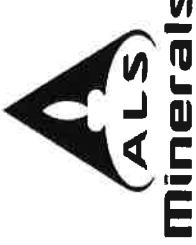
Télécopieur: +1 (604) 984 0218

minerals

Page: 3 - A
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 18-JUIL-2016
Compte: RESLUT

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16098335


Description échantillon	Méthode élément L.D.	WEI: 21	Au-AA23
		Poids reçu kg	Au ppm
S279591		2.34	0.072
S279592		2.05	<0.005
S279593		2.50	<0.005
S279594		2.87	0.013
S279595		3.00	0.008
S279596		3.07	0.008
S279597		2.35	0.007
S279598		2.22	0.005
S279599		2.54	8.25
S279600		2.01	1.030
S279601		2.48	<0.005
S279602		2.84	0.005
S279603		3.15	<0.005
S279604		2.65	0.010
S279605		3.08	0.076
S279606		2.85	0.082
S279607		2.50	0.037
S279608		1.88	0.005
S279609		1.62	<0.005
S279610		3.74	0.011
S279611		2.32	<0.005
S279612		2.31	0.005
S279613		2.17	0.025
S279614		3.51	0.075
S279615		3.24	0.094
S279616		2.69	0.137
S279617		1.66	0.015
S279618		2.28	0.234
S279619		2.29	0.024
S279620		2.67	0.121
S279621		1.71	0.009
S279622		3.44	0.009
S279623		2.62	0.008
S279624		2.22	0.073
S279625		2.26	0.012
S279626		3.50	0.032
S279627		1.73	0.037
S279628		2.59	0.016
S279629		1.77	<0.005
S279630		2.73	<0.005

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

CERTIFICAT D'ANALYSE VO16098335

Description échantillon	Méthode élément L.D.	WEr-21	Au-AA23
		Poids reçu kg	Au ppm
S279631		4.11	0.005
S279726		2.22	0.005
S279727		2.15	<0.005
S279728		1.97	0.006
S279729		2.62	<0.005
S279730		2.41	0.060
S279731		3.13	<0.005
S279732		1.53	<0.005
S279733		2.48	<0.005
S279734		2.72	<0.005
S279735		2.69	<0.005
S279736		3.01	0.012
S279737		1.82	0.024
S279738		2.29	<0.005
S279739		2.16	<0.005
S279740		2.27	<0.005
S279741		2.65	<0.005
S279742		2.38	0.008
S279743		2.02	0.018
S279744		1.52	0.010
S279745		2.12	0.033
S279746		2.67	0.023
S279747		2.32	0.523
S279748		2.34	2.65
S279749		2.58	0.284
S279750		2.24	0.007
S279951		2.45	0.072
S279952		2.50	<0.005
S279953		2.54	<0.005
S279954		2.15	0.005
S279955		2.80	<0.005
S279956		2.09	<0.005
S279957		2.40	0.020
S279958		2.14	<0.005
S279959		2.10	0.025
S279960		2.15	0.063
S279961		2.19	0.015
S279962		2.65	<0.005
S279963		3.04	<0.005
S279964		2.24	<0.005

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: +1 (604) 984 0221
www.alsglobal.com

À: RESSOURCES LUTSWISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

Télécopieur: +1 (604) 984 0218

Page: 5 - A
Nombre total de pages: 5 (A)
plus les pages d'annexe
Finalisée date: 18-JUIL-2016
Compte: RESLUT

CERTIFICAT D'ANALYSE VO16098335			
Description échantillon	Méthode élément unités L.D.	WEI 21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005
S279965		2.09 <0.005	
S279966		2.73 <0.005	
S279967		1.94 0.006	
S279968		3.49 0.006	

ALS Canada Ltd.
2103 Dollartown
North Vancouver
Téléphone: +1
www.alsglobal.com

Télécopieur: +1 (604) 984 0218

A:RESSOURCES LUTSVISKY INC.
C.P. 18026, SUCC. STE-ROSE
LAVAL QC H7L 6B2

minerals

Page: Annexe 1
Total # les pages d'annexe: 1
Finalisée date: 18-JUIL- 2016
Compte: RESULT

Projet: Monnexco

CERTIFICAT D'ANALYSE VO16098335

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE

Applique à la Méthode:

Traité à ALS Thunder Bay, 1160 Commerce Street, Thunder Bay, ON, Canada.
CRU- 31 CRU- QC
PUL- QC SPL- 21
LOG- 22
WEI- 21

Annexe à la Méthode

Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada.
AII-A23

CERTIFICAT VO16135987

Projet: Monnexco
Bon de commande #: MB16- 07
Ce rapport s'applique aux 75 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 15-AOUT- 2016.
Les résultats sont transmis à:
LUTSVISKY ADMINISTRATION | MARTIN DEMERS |

PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION
WEI- 21	Poids échantillon reçu
CRU- QC	Test concassage QC
PUL- QC	Test concassage QC
LOG- 22	Entrée échantillon - Reçu sans code barre
CRU- 31	Granulation - 70 % < 2 mm
SPL- 21	Échant. fractionné - div. rifflés
PUL- 31	Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES

CODE ALS	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30 g fini FA- AA	AAS
Au- GRA21	Au 30 g fini FA- GRAV	WST- SIM

À: RESSOURCES LUTSVISKY INC.
ATTN: MARTIN DEMERS
C.P. 18026, SUCC. STE- ROSE
LAVAL QC H7L 6B2

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.
***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Nacera Amara
Signature: *Nacera Amara*
Nacera Amara, Laboratory Manager, Val d'Or

CERTIFICAT D'ANALYSE VO16135987

Description échantillon	Méthode élément unités L.D.	WEI- 21	Poids reçu kg	Au- AA23	Au- GRA21
S280001		2.93	3.15	Au	Au
S280002		2.64	0.062	ppm	ppm
S280003		3.01	0.638		0.05
S280004		2.70	0.009		
S280005		2.61	0.011		
S280006		3.13	0.684		
S280007		2.56	0.184		
S280008		2.71	0.134		
S280009		3.96	0.275		
S280010		3.22	0.450		
S280011		2.84	0.319		
S280012		2.55	0.180		
S280013		2.96	0.282		
S280014		3.28	0.006		
S280015		3.43	2.25		
S280016		3.45	3.90		
S280017		3.14	<0.005		
S280018		2.63	0.014		
S280019		2.20	<0.005		
S280020		2.77	0.006		
S280021		3.14	0.005		
S280022		2.52	<0.005		
S280023		3.75	0.008		
S280024		1.98	<0.005		
S280025		2.28	0.021		
S280026		2.55	0.189		
S280027		2.93	0.727		
S280028		2.12	0.196		
S280029		2.63	>10.0		
S280030		2.76	4.06		
S280031		3.28	0.080		
S280032		2.48	0.289		
S280033		2.64	0.006		
S280034		2.35	0.030		
S280035		2.24	2.94		
S280036		3.58	<0.005		
S280037		2.14	<0.005		
S280038		1.67	0.015		
S280039		2.50	<0.005		
S280040		2.53	<0.005		

CERTIFICAT D'ANALYSE VO16135987

Description échantillon	Méthode élément L.D.	WEI-21	Au-AA23	Au-GR421
		Poids reçu kg	Au ppm	Au ppm
		0.02	0.005	0.05
S280041		2.42	<0.005	
S280042		2.64	0.006	
S280043		1.59	<0.005	
S280044		3.11	<0.005	
S280045		3.04	<0.005	
S280046		2.61	<0.005	
S280047		4.50	0.078	
S280048		3.23	0.043	
S280049		3.67	0.040	
S280050		2.86	<0.005	
S280101		3.38	<0.005	
S280102		2.15	<0.005	
S280103		2.89	<0.005	
S280104		3.08	<0.005	
S280105		2.50	<0.005	
S280106		2.76	<0.005	
S280107		2.66	<0.005	
S280108		3.00	<0.005	
S280109		3.35	<0.005	
S280110		2.54	<0.005	
S280111		3.18	<0.005	
S280112		3.13	<0.005	
S280113		2.60	0.006	
S280114		2.59	<0.005	
S280115		2.68	<0.005	
S280116		2.22	<0.005	
S280117		2.89	<0.005	
S280118		3.08	<0.005	
S280119		3.00	<0.005	
S280120		2.60	0.019	
S280121		3.18	0.070	
S280122		2.71	<0.005	
S280123		1.67	<0.005	
S280151		2.73	<0.005	
S280152		2.41	<0.005	

