

TECHNICAL REPORT ON THE

UPDATED MINERAL RESOURCE ESTIMATE FOR THE MAIN ZONE, HYLAND GOLD PROPERTY, WATSON LAKE MINING DISTRICT, SOUTHEAST YUKON, CANADA

Located in the Watson Lake Mining District NTS: 95D/05 & 95D/12 60° 30' 18" N Latitude 127° 51' 24" W Longitude

Prepared for:

Banyan Gold Corp.

Suite 250 – 2237 2nd Avenue Whitehorse, Yukon Y1A 0K7

Prepared By:

Robert C. Carne, M.Sc., P.Geo., Carvest Holdings Ltd. Allan Armitage, Ph. D., P. Geol., - SGS Canada Inc. Paul D. Gray, P.Geo. - Banyan Gold Corp

May 1, 2018

e of C	ontents	Page
OL INANA	ADV	4
	ARY	
	DUCTION	
2.1	Introduction and Overview	
2.2	Sources of Information	
2.3	Site Visit	
2.4	Terms of Reference	
2.5	Units of Measure and Abbreviations	
	NCE ON OTHER EXPERTS	
	RTY DESCRIPTION	
4.1 4.2	Description	
4.2	Royalty AgreementsEnvironmental Liabilities and Permits	
		13
PHYSIC	SIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND DGRAPHY	15
5.1	Project Access	
5.2	Climate	
5.3	Local Resources and Infrastructure	
5.4	Physiography, Elevation and Vegetation	
	RY	
	OGICAL SETTING AND MINERALIZATION	
7.1	Regional Geology	
7.2	Regional Mineralization and Metallogeny	
7.3	Property Geology and Mineralization	
7	7.3.1 Geology	
•	7.3.2 Alteration	26
7	7.3.3 Mineralization	26
	7.3.3.1 Introduction	26
	7.3.3.2 Main Zone Mineralization	28
	7.3.3.3 Camp Zone Mineralization	29
	7.3.3.4 Cuz Zone Mineralization	30
	7.3.3.5 Unnamed Area of Mineralization	31
	7.3.3.6 Montrose Ridge Zone Mineralization	31
	7.3.3.7 Hyland South Zone	32
	7.3.3.8 Pyrite Creek Showing	32
DEPOS	SIT TYPES	32
8.1	Overview of Hyland Gold Mineralization Styles	
8.2	Sediment-hosted Gold Occurrences Elsewhere in Selwyn Basin	
8.3	Distal-disseminated Sediment-hosted Gold Deposits at the Marigold Mine, Nevad	
EXPLO	RATION	
9.1	Geological Mapping	
9.2	Geochemical Sampling	
9	2.2.1 Introduction	
	9.2.2 Main Zone-Camp Zone Anomaly	
	9.2.3 Southeast Anomaly	
9	9.2.4 East Anomaly	41

	9.2.5	Cuz Anomaly	41
	9.2.6	Montrose Ridge Anomaly	41
	9.2.7	Discussion of Geochemical Survey Results	42
	9.3 Ge	ophysical Surveys	45
		chanized Trenching	
10.0	DRILLING		53
	10.1 Dri	lling Completed by Previous Operators	53
		1988 Diamond Drilling	
	10.1.2	1990 Reverse Circulation (RC) Percussion Drilling	55
		2003 and 2005 Diamond Drilling Programs	
		2010 and 2011 Diamond Drilling Programs	
	10.2 Dia	mond Drilling Completed by Banyan Gold Corp	61
	10.2.1	2015 Drilling	61
	10.2.2	2016 Drilling.	61
	10.2.3	2017 Drilling	62
11.0	SAMPLE P	REPARATION, ANALYSES AND SECURITY	63
	11.1 Sur	face Soil and Rock Sampling	63
	11.2 Dia	mond Drill Core	64
	11.2.1	2010 and 2011 Diamond Drilling Programs	64
	11.2.2	2 2015 Diamond Drilling Program	65
	11.2.3	3 2016 Diamond Drilling Program	65
	11.2.4	2017 Diamond Drilling Program	66
		verse Circulation Drill Cuttings	
12.0		FICATION	
		ality Assurance and Quality Control (QA/QC) Program	
		ality Assurance and Quality Control (QA/QC) of 2011 Drill Programs	
		ality Assurance and Quality Control (QA/QC) of 2015 Drill Programs	
		ality Assurance and Quality Control (QA/QC)l of 2016 and 2107 Drill Programs	
		Assessment of Precision Errors.	
	12.4.2	Assessment of Accuracy	72
13.0		ROCESSING AND METALLURGICAL TESTING	
14.0		RESOURCE ESTIMATE	
	14.1 Int		
		ll Hole Database	
		neral Resource Modelling and Wireframing	
		mposites	
		nde Cappingecific Gravity	
	1	ock Model Parameters	
		ide Interpolation	
		neral Resource Classification Parameters	
		neral Resource Statement.	
		del Validation and Sensitivity Analysis	
		nsitivity to Cut-off Grade	
		mparison to Previous Mineral Resource Estimate	
15.0		RESOURCE ESTIMATES	
16.0		THODS	
	· · · · · · · · · · · · · · · · · · ·		

17.0	RECOVERY METHODS	95
18.0	PROJECT INFRASTRUCTURE	
19.0	MARKET STUDIES AND CONTRACTS	
20.0	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY	•
	IMPACT	95
21.0	CAPITAL AND OPERATING COSTS	95
22.0	ECONOMIC ANALYSIS	
23.0	ADJACENT PROPERTIES	
	23.1 MacMillan Occurrence	96
	23.2 Mel Deposit	96
24.0	OTHER RELEVANT DATA AND INFORMATION	97
25.0	INTERPRETATION AND CONCLUSIONS	97
26.0	RECOMMENDATIONS	101
27.0	REFERENCES	105
CERT	TIFICATE OF QUALIFIED PERSON	109
	TIFICATE OF QUALIFIED PERSON	
	TIFICATE OF QUALIFIED PERSON	

List of Figu	ires	Page
Figure 4.1:	Yukon-Scale Project Location Map	10
Figure 4.2:	Project Regional Location Map	11
Figure 4.3:	Hyland Gold Project Mineral Claims Location Map – North Sheet	12
Figure 4.4:	Hyland Gold Project Mineral Claims Location Map – South Sheet	
Figure 5.1:	Property Infrastructure	
Figure 7.1:	Regional Geology Map	21
Figure 7.2:	Property Scale Geology Map	25
Figure 7.3:	Property Scale Structural Geology Map	27
Figure 8.1:	Hyland Gold Mineralization Conceptual Model for Mineralization	34
Figure 9.1:	Soil Sampling Compilation Map – Gold Geochemistry	
Figure 9.2:	Soil Sampling Compilation Map – Arsenic Geochemistry	40
Figure 9.3:	Stream Sediment Sample Compilation Map – Gold Geochemistry	43
Figure 9.4:	Stream Sediment Sample Compilation Map – Arsenic Geochemistry	44
Figure 9.5:	Geophysical Work Compilation Map	46
Figure 9.6:	Airborne Total Field Magnetic Anomaly	47
Figure 10.1:	Property-wide Drilling Compilation Map	54
Figure 10.2:	Main Zone and Camp Zone Drilling Compilation Map	56
Figure 12.1:	Coefficient of Variance (CV) quarter-core duplicate Au-plot	70
Figure 12.2:	Coefficient of Variance (CV) coarse reject duplicate plot	
Figure 12.3:	Coefficient of Variance (CV) pulp duplicate plot	
Figure 12.4:	Thompson-Howarth Error Analysis Plot of Field (Quarter Core) Duplicates	71
Figure 12.5:	Performance Summary for standard reference materials	
Figure 14-1:	Isometric View Looking Northeast Showing the Distribution of all	
	Surface Drill Holes and Channels Completed in the Main Zone	
	Deposit Area (histogram of gold is shown of the drill hole/trench)	79
Figure 14-2:	Isometric View Looking North Showing 2016 LiDAR Survey Topographic	
	Surface for the Main Zone Area	80
Figure 14-3:	Isometric View Looking Northeast Showing 2018 Main Zone 3D Grade	
	Controlled Wireframe Model (clipped to Topography0	80
Figure 14-4:	Isometric View Looking Northeast Showing the 2018 Main Zone Model	
	and Location of the 2016/2017 Drill holes/trenches	81
Figure 14-5:	Histogram of Specific Gravity A) Samples from Within the Main Zone Mineralized	
	Domain	84
Figure14-6:	Specific Gravity versus gold grade for A) All samples and B) Samples	
	from within the Main Zone Mineralized Domain	
Figure 14-7:	Isometric View Looking Northeast Showing the Main Zone Deposit Mineral Resource B	
	Model, and Traces of the Drill Hole and Trenches.	86
Figure 14-8:	Isometric View Looking Northeast of the Main Zone Deposit Mineral Resource Block	
	Grades.	90
Figure 14-9:	Isometric View Looking Northeast the distribution of Indicated Mineral	
	Resource	
Figure 14-10:	Isometric View Looking Northeast Showing the distribution of Indicated and Inferred Mi	ineral
	Resource Blocks	91
Figure 14-11:	Comparison of Inverse Distance Cubed ("ID3"), Inverse Distance Squared ("ID2") & Nea	
	Neighbour ("NN") Models for the Global Mineral Resources	92

List of Tab	les	Page
Table 1-1:	Main Zone Deposit 2018 Mineral Resource Estimate, March 22 nd , 2018	3
Table 9-1:	Background and Threshold Values for Important Elements	
Table 9-2:	Hyland Gold Project Selected Main Zone Trenching Results	
Table 10-1:	Summary of Significant Main Zone Drill Intersections (1990 – 2003)	
Table 10-2:	Selected Intervals from Hyland Main Zone 2016 Drill Program	
Table 10-3:	Selected Intervals from Hyland Main Zone 2017 Drill Program	
Table 12-1:	Au Duplicate and Standard Reference Material Instertion Summary	
Table 12-2:	Summary of Duplicate Error Analysis for Au assays	
Table 12-3:	Standard Reference Material	
Table 12-4:	Standard Reference Material	73
Table 12-5:	Standard Reference Material	73
Table 13-1:	1989 Bottle Roll Test Results	75
Table 13-1:	2017 Metallurgy Test Results	76
Table 14-1:	Main Zone Deposit Area Drill Hole and Channel Database Summary	
Table 14-2:	Statistical Analysis of the Drill Core and Channel Assay Data from	
	Within the Main Zone Deposit Mineral Domain	82
Table 14-3:	Summary of the Drill Core and Trench Composite Data Constrained	
	by the Main Zone Mineral Resource Models (Drill Hole and Trench Samples)	83
Table 14-4:	Deposit Block Model and Geometry	
Table 14-5:	Grade Interpolation Parameters for the Main Zone	87
Table 14-6:	Main Zone Deposit 2018 Mineral Resource Estimate, March 22 nd , 2018	89
Table 14-7:	Comparison of Block Model Volume with the Total Volume	
	of the Main Zone Grade Control Model	92
Table 14-8:	Comparison of Average Composite Grades with Block Model Grades	92
Table 14-9:	Main Zone Mineral Resource at Various Gold Cut-off Grades, March 22, 2018	93
Table 14-10:	Comparison of the 2012 and 2018 Main Zone Deposit Mineral Resource Estimate	94
Table 26-1:	Recommended Hyland Gold Project Exploration Budget	103
Appendices	<u>s</u>	
Appendix 1:	Hyland Gold Project Tenure Data (downloaded from Yukon Mining Recorder on Apri	1 25, 2018)

Listing of Drill Holes Completed on the Hyland Gold Project

Appendix 3: Hyland Gold Property Royalties Review

Appendix 2:

1.0 SUMMARY

This report summarizes exploration work performed on the Hyland Gold Project in southeast Yukon. It is an update of an independent National Instrument 43-101 Technical Reports written for Banyan Coast Capital Corp., now Banyan Gold Corp., and filed on SEDAR by Armitage and Gray (2012b) dated November 2, 2012, replaced by Carne and Armitage (2016) dated August 04, 2016. It incorporates updates to the mineral resource estimate from the 2016 Technical Report, a revised and updated summary of geochemical, geological, geophysical exploration and drilling conducted on the property, an updated review of the exploration history, a discussion of the Deposit Model and its significance for exploration potential of the Project, and Recommendations for further work.

The Hyland Gold Project is an advanced gold prospect located in the Watson Lake Mining District of southeast Yukon, approximately 74 kilometers northeast of the community of Watson Lake. It consists of 927 claims totaling 18,620 hectares and contains two areas of noteworthy gold mineralization, the Main Zone and the Cuz Zone as well as two other areas of exploration interest termed the Camp Zone and the Montrose Ridge Zone. Banyan Gold Corp. has earned a 100% interest in the property subject to various NSR agreements in favour of previous operators.

Work on and around the Hyland Gold Project has been ongoing since the late 1800's, however most work prior to the early 1980's was focused on base metal exploration. The potential for gold mineralization was first recognized in 1981 when anomalous arsenic-bismuth-gold soil geochemistry was documented at the Main Zone and the Cuz anomaly areas. Exploration for gold through the 1980's, 1990's and into the early 2000's consisted of extensive soil and rock geochemical sampling, airborne and ground-based geophysical surveys, diamond drilling, reverse circulation drilling and bulldozer trenching that discovered bedrock mineralization at the Main Zone and Cuz Zone and culminated in the definition of a Resource Estimate for the Main Zone in 2012. Since Banyan Gold Corp. acquired the property in 2013 it has carried out geochemical sampling, road building, excavator trenching and diamond drilling in 2013, 2014, 2015, 2016 and 2017. This work has refined the knowledge of the north trending Main Zone gold-silver deposit and the east-southeast trending Cuz Zone as well as outlining a promising new exploration prospects at the Montrose Ridge and Camp Zones.

Gold mineralization has been discovered in several areas on the Hyland Gold Project. The Main Zone has received the most exploration and it is the best known example:

- It occurs within a slightly recumbent anticline developed along a regional structural corridor of faulting and folding known as the Quartz Lake Lineament. There is a strong coincidence with other less well explored areas of gold mineralization and untested geochemical targets within the Quartz Lake Lineament or cross-cutting structures;
- Gold occurs in quartz veins and breccias in quartzite, to a lesser degree in silicified (jasperoid altered) zones in phyllite intervals and, as a minor constituent of iron sulphide or iron carbonate replacement zones in limestone;
- Mineralization is both stratabound and structurally controlled;
- There is no direct evidence of an igneous association for mineralizing fluids although the pathfinder element suite of arsenic-bismuth-tungsten and the association of hydrothermal tourmaline suggests involvement of granitic fluids, at least in part;
- Highly fractured zones of better grade gold mineralization can be oxidized to a much greater depth than relatively unfractured, but silicified, flanking zones of lower grade mineralization; and

1

• Gold mineralization at Hyland Gold bears some similarity to other sediment-hosted gold mineralization elsewhere in Yukon. However, closest similarity with other occurrences is with a cluster of deposits that form the Marigold Mine in the Battle Mountain-Eureka Trend of north-central Nevada.

The Hyland Gold Main Zone lies at the top of a small hill upon a north trending ridge located in the central part of the property. Weathering and consequent oxidation of sulphide minerals extends to depths of 60 m from surface at the top of the hill while glaciation has removed most of the oxidized profile at lower elevations. Best assays in the oxide zone are returned from samples of grey, scorodite-stained stockwork quartz veins with abundant boxwork after sulphide minerals. Moderately mineralized intervals occur within brecciated, silicalitered, brittle quartzite intervals adjacent to the higher grade stockwork mineralization.

SGS Canada Inc. ("SGS") was contracted by Banyan Gold Corp. ("Banyan Gold") to complete an updated mineral resource estimate for the Main Zone Gold Deposit ("Main Zone") within the Hyland Project (the "Project") and to prepare a technical report written in support of the updated mineral resource estimate. The reporting of the updated mineral resource estimate complies with all disclosure requirements for mineral resources set out in the NI 43-101 Standards of Disclosure for Mineral Projects (2011). The classification of the updated mineral resource is consistent with CIM Definition Standards - For Mineral Resources and Mineral Reserves (2014). The Project is located approximately 74 kilometres northeast of the Town of Watson Lake in the Watson Lake Mining District of southeast Yukon, Canada.

Banyan Gold is a Canadian public company and is engaged in the business of exploration and development of precious metals. Banyan Gold's common shares are listed on the on the TSX Venture Exchange ("TSXV") and trades under the symbol BYN.

This technical report will be used by Banyan Gold in fulfillment of their continuing disclosure requirements under Canadian securities laws, including National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). The technical report is written in support of the updated resource estimate released by Banyan on March 22nd, 2018. Banyan reported that the Main Zone contains an Indicated Mineral Resource of 8.6 million tonnes grading 0.85 g/t gold equivalent ("AuEq") for 236,000 AuEq ounces and an Inferred Mineral Resource of 10.8 million tonnes grading 0.83 g/t AuEq for 288,000 AuEq ounces at a 0.3 g/t AuEq cut-off grade.

The updated mineral resource presented in this report was estimated by Allan Armitage, Ph.D., P. Geo, ("Armitage" or the "Author") of SGS. Armitage is an independent Qualified Person as defined by NI 43-101.

This mineral resource estimate is an update to a 43-101 mineral resource estimate completed in 2012. The first resource estimate completed for the Main Zone was initially commissioned by Argus and completed by GeoVector with a report date of March 1, 2012. Argus reported an Inferred Resource, at a 0.6 g/t gold equivalent ("AuEq") cutoff grade, of 12,503,994 tonnes containing 361,692 ounces gold at 0.9 g/t and 2,248,948 ounces silver at a grade of 5.59 g/t.

Since the original resource estimate for the Main Zone, Banyan Gold has completed addition drilling and trenching in 2016 and 2017. The results of the drilling and trenching by Banyan Gold has been incorporated into the Main Zone database and included in the update resource. The focus of the 2016/2017 drill and trench programs consisting of infill trenching and infill and step out drilling were to:

• expand the understanding of the mineralizing controls at the Main Zone;

- confirm the previous geological interpretation and test the limits and continuity of the mineralization along strike to the north and south of the known deposit; and
- improve drill spacing to show continuity of mineralization and increase overall confidence in the deposit.

In 2016, the Company completed a LIDAR survey that provided a more accurate topographic surface for the Main Zone deposit. Additionally, utilizing the 2016 LIDAR survey, all historic drill collars were located and surveyed in the field as part of the 2017 program resulting in more accurate controls on all drill holes than was available for previous studies.

Completion of the updated mineral resource involved the assessment of an updated drill hole database, an updated topographic surface, an updated three-dimensional (3D) wireframe grade control model, and available written reports. Armitage recently visited the property on the 19th and 20th of September, 2017. The effective date of the updated mineral resource estimate is March 22nd, 2018.

The updated resource was released by Banyan Gold on March 22, 2018 (see Banyan Gold's news release dated March 22nd, 2018, which is filed on SEDAR under Banyan Gold's profile). The Main Zone Deposit contains, at a 0.3 g/t AuEq cut-off grade, mineral resources of 216,000 ounces of gold and 1,954,000 ounces of silver (8.6 million tonnes at an average grade of 0.78 g/t Au and 7.04 g/t Ag) in the Indicated category (**Table 1-1**), and 266,000 ounces of gold and 1,845,000 ounces of silver (10.8 million tonnes at an average grade 0.77 g/t Au and 5.32 g/t Ag) in the Inferred category.

Table 1-1	Main Zone Dep	osit 2018 Mineral	Resource Estimate.	March 22 nd .	2018

	In situ	Au		Ag		AuEq	
Category	Tonnes Suu	Grade (g/t)	Ozs	Grade (g/t)	Ozs	Grade (g/t)	Ozs
Indicated	8,637,000	0.78	216,000	7.04	1,954,00 0	0.85	236,000
Inferred	10,784,000	0.77	266,000	5.32	1,845,00 0	0.83	288,000

- (1) Mineral resources which are not mineral reserves do not have demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimate.
- (2) Mineral resources are reported at a cut-off grade of 0.3 g/t AuEq. AuEq grade is based on \$1,350.00/oz Au, \$17.00/oz Ag and assumes a 100% recovery. The AuEq calculation does not apply any adjustment factors for difference in metallurgical recoveries of gold and silver. This information can only be derived from definitive metallurgical testing which has yet to be completed.
- (3) The updated Indicated and Inferred mineral resource estimate presented in this Technical Report was prepared and disclosed in compliance with all disclosure requirements for mineral resources set out in the NI 43-101 Standards of Disclosure for Mineral Projects (2011). The classification of the updated mineral resource is consistent with CIM Definition Standards For Mineral Resources and Mineral Reserves (2014), including the critical requirement that all mineral resources "have reasonable prospects for eventual economic extraction".

Resource Estimation Parameters

In order to complete an updated mineral resource estimate for the Main Zone, a database comprising a series of comma delimited spreadsheets containing drill hole and channel information was provided by Banyan Gold. The database included hole and channel location information (NAD83 / UTM Zone 10), survey data, assay data, lithology data and specific gravity data. The data was then imported into GEMS for wireframe modeling, statistical analysis, block modeling and resource estimation. The update Mineral Resource Estimate prepared by SGS is based on data from 71 drill holes (10,564 metres) and 14 trenches (2,014 metres) and includes 4,030 metres of new drill data (21 holes) from 2016 to 2017 and 617 metres of trenching (7 trenches) completed in 2017.

In addition to the drill hole and trench database, Banyan Gold provided SGS with a three-dimensional (3D) digital elevation model in DXF format.

For the 2018 resource estimate, a grade control wireframe model was built which involved visually interpreting the Main Zone mineralized zones from cross sections using histograms of gold and silver values. Polygons of mineral intersections were made on 25 metre cross sections and these were wireframed together to create a contiguous resource model in GEOVIA GEMS version 6.7.4 software. The modeling exercise provided broad controls of the dominant mineralizing direction. The Main Zone resource model defines a shallow north plunging $(10^{\circ} - 15^{\circ})$ antiformal structure with shallow to moderate $(20^{\circ} - 35^{\circ})$ west dipping limbs (axial plane). The antiformal structure extends for approximately 900 metres along strike. The lower limb of the antiformal structure extends to a depth of up to 250 metres.

The assay sample database available for the revised resource modelling totaled 2,681 from the 71 drill holes and 14 trenches which define the Main Zone Deposit mineral domain. A statistical analysis of the drill core and channel assay data from within the mineralized domains is presented in. Average width of the drill core sample intervals is 1.50, within a range of 0.20 metres to 13.72 metres; the average width of the channel assay samples is 3.10, within a range of 0.70 to 8.10 metres. To minimize the dilution and over smoothing due to compositing, a composite length of 1.50 metres was chosen as an appropriate composite length for the drill core assay data and a composite length of 2.00 metres was chosen for the channel sample data.

A statistical analysis of the composite database within the Main Zone Deposit 3D wireframe model (the "resource" population) was conducted to investigate the presence of high grade outliers which can have a disproportionately large influence on the average grade of a mineral deposit. As a result of the analysis, no capping of high grade composites to limit their influence during the grade estimation was necessary.

Banyan had Bureau Veritas complete specific gravity ("SG") measurements, by pycnometry, on the pulps of 143 core samples submitted for assay analysis from the Main Zone. Of the 143 samples, 76 are from within the Main Zone mineralized envelope and 67 are from waste rocks. The SG values of the 76 mineralized samples ranged from 2.65 to 4.60 and averaged 3.03. The average grade of the 76 mineralized samples is 0.95 g/t Au, ranging from 0.01 to 6.97 g/t Au. The SG values of the 67 waste samples ranged from 2.67 to 3.61 and averaged 2.89. The average grade of the 67 waste samples is 0.08 g/t Au, ranging from 0.01 to 0.67 g/t Au. For the current Mineral Resource Estimate an SG of 3.03 is used for the mineralized zone and 2.90 for the waste rocks.

A block model within NAD83 / UTM Zone 10 space (no rotation) with block dimensions of 5 x 5 x 5 metres in the x (east), y (north) and z (level) directions was placed over the grade shells with only that portion of each

block inside the shell recorded (as a percentage of the block) as part of the mineral resource estimate (% Block Model). The block size was selected based on borehole spacing, composite assay length, the geometry of the main Zone mineralized model, and the selected starting mining method (Open Pit). At the scale of the Main Zone Deposit this provides a reasonable block size for discerning grade distribution, while still being large enough not to mislead when looking at higher cut-off grade distribution within the model. The model was intersected with a surface topography to exclude blocks, or portions of blocks, that extend above the bedrock surface.

Grades for Au (g/t) and Ag (g/t) were interpolated into blocks by the ID2 method. Two passes were used to interpolate grade into all of the blocks in the grade shells. For Pass 1 the search ellipse size (in metres) for the Main Zone domain was set at 45 x 45 x 25 in the X, Y, Z direction; for Pass 2 the search ellipse size for each domain was set at 130 x 130 x 50. Grades were interpolated into blocks using a minimum of 6 and maximum of 12 composites to generate block grades during Pass 1 (maximum of 3 composites per drill hole), and a minimum of 4 and maximum of 12 composites to generate block grades during pass 2.

The confidence classification of the resource (Indicated and Inferred) is based on an understanding of geological controls of the mineralization, and the drill hole pierce point spacing in the resource area. Blocks were classified as Indicated if they were populated with grade during Pass 1. The Pass 2 search ellipse size was set to assure all remaining blocks within the wireframe were assigned a grade. These blocks were classified as Inferred.

All geological data used for the resource estimate was reviewed and verified by the Author as being accurate to the extent possible and to the extent possible all geologic information was reviewed and confirmed. The Author feels that the assay sampling and extensive QA/QC sampling of core by Banyan Gold provides adequate and good verification of the data and believe the work to have been done within the guidelines of NI 43-101.

The results of diamond drilling to date show that the Main Zone mineralization defined by the above resource model is open for expansion in all directions and to depth. The Cuz Zone mineralization has demonstrated continuity over 800 m on a southeast trend and is open along strike and to depth. With further drilling there is potential to expand on the resource at the Main Zone and define a maiden resource at the Cuz Zone.

The Montrose Ridge Zone, a new oxide gold discovery located south of the Cuz Zone needs to be further defined by excavator trenching before definition by diamond drilling.

The major zones of mineralization on the property are aligned along the Quartz Lake Lineament, an 18 km long zone of faulting, folding and brecciation that has been the locus of a variety of styles of gold mineralization. The Main Zone is classified an example of a sediment-hosted distal disseminated gold deposit, the best known example of which is the Marigold Mine in the Battle Mountain-Eureka Trend of north-central Nevada. Other areas of gold mineralization on the property bear similarities to carbonate replacement and manto styles of mineralization. In aggregate, the known areas of mineralization in conjunction with less well explored areas of strongly anomalous gold and pathfinder element response, are testament to a strong causative hydrothermal system giving rise to a large area of high exploration potential for a variety of sediment hosted gold exploration targets types.

A \$3,500,000 exploration program is recommended for the Hyland Gold Project. Phase I consists of, detailed soil sampling and excavator trenching at an estimated cost of \$396,922. A \$3,102,184 Phase II program of diamond drilling of 45 drill holes totaling 6,000 m at the Main Zone should proceed with a focus of extending

the mineralized envelope to the north and east, and to depth beneath the relatively shallow drilling carried out to date. Concurrent with that, rotary air blast (RAB) or reverse circulation (RC) reconnaissance scale drilling is recommended to refine diamond drill targeting in established areas of gold potential at the Camp, Cuz and Montrose Ridge Zones, as well as any other areas of high exploration interest that are identified by the Phase I work.

2.0 INTRODUCTION

2.1 Introduction and Overview

Banyan Gold Corp. ("Banyan" or "the Company") is a Vancouver-based Canadian public company engaged in the business of exploration and development of precious metals, listed on the TSX Venture Exchange with trading symbol TSX-V:BYN.

The Company holds a 100% interest in the Hyland Gold Project ("the Project") in southeast Yukon, subject to underlying royalties described elsewhere in this report.

This report is an update to a previously reported Technical Report by Armitage and Carne (2016). It documents:

- historical exploration work, description of the property, geology and nature of mineralization;
- a previously reported mineral resource estimate;
- an updated review of the Deposit Model; and
- recommendations for further exploration work.

The Hyland Gold Project is being explored for distal-disseminated sediment-hosted gold mineralization by Banyan and is currently in an advanced stage of exploration.

SGS Canada Inc. ("SGS") was contracted by Banyan Gold Corp. ("Banyan") to complete an updated mineral resource estimate for the Main Zone Gold Deposit ("Main Zone") within the Hyland Property (the "Property") located approximately 74 kilometres northeast of the community of Watson Lake Yukon, Canada, and to prepare a technical report written in support of the updated mineral resource estimate. The reporting of the updated mineral resource estimate complies with all disclosure requirements for mineral resources set out in the NI 43-101 Standards of Disclosure for Mineral Projects (2011). The classification of the updated mineral resource is consistent with CIM Definition Standards - For Mineral Resources and Mineral Reserves (2014).

This technical report will be used by Banyan Gold in fulfillment of their continuing disclosure requirements under Canadian securities laws, including National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). The technical report is written in support of the updated resource estimate released by Banyan on March 22nd, 2018. Banyan reported that the Main Zone contains an Indicated Mineral Resource of 8.6 million tonnes grading 0.85 g/t gold equivalent ("AuEq") for 236,000 AuEq ounces and an Inferred Mineral Resource of 10.8 million tonnes grading 0.83 g/t AuEq for 288,000 AuEq ounces at a 0.3 g/t AuEq cut-off grade.

The updated mineral resource presented in this report was estimated by Allan Armitage, Ph.D., P. Geo, ("Armitage" or the "Author") of SGS. Armitage is an independent Qualified Person as defined by NI 43-101.

2.2 Sources of Information

The data used in the updated resource estimation and the development of this report was provided to SGS by Banyan. Some information including the property history and regional and property geology has been sourced from previous technical reports and revised or updated as required. The Property was the subject of a NI 43-101

Technical Report initially commissioned by Argus Metals Corp. ("Argus") and written by GeoVector Management Inc. ("GeoVector") with a report date of March 1, 2012. The report was updated for Banyan Coast Capital Corp. ("Banyan Coast Capital") (report date of November 02, 2012) and later for Banyan Gold Corp. (report date of August 4, 2016).

Parts of Sections 4 to 13 in this report have been excerpted or summarized from the previous technical reports which are referenced throughout the text. Specific sections have been updated to include information on recent exploration work.

2.3 Site Visit

Carne visited the Property on the 26th and 27th of July and Armitage visited the Property on the 19th and 20th of September, 2017. Armitage examined several core holes, drill logs and assay certificates. Assays were examined against drill core mineralized zones. Armitage inspected the offices, core logging facilities/sampling procedures and core security. Both Carne and Armitage participated in a field tour of the property geology conducted by Banyan employees Paul Gray, P.Geo. (Vice President Exploration) and Leif Bjornson, MSc., P.Geo. (Project Geologist).

2.4 Terms of Reference

Robert Carne, M.Sc., P.Geo., ("Carne") of Carvest Holdings Ltd. and Allan Armitage Ph.D., P.Geol., ("Armitage") of SGS Canada Inc. were contracted by Banyan to prepare this independent National Instrument 43-101 ("NI 43-101") Technical Report with the assistance of Paul D. Gray, P.Geo., ("Gray"), Banyan Gold Corp.'s V.P. Exploration; to be filed with the Toronto Stock Exchange (TSX) Venture Exchange and the Canadian System for Electronic Document Analysis and Retrieval (SEDAR). Carne and Gray are responsible for preparation of the report and compilation of historical data, with the exception of *Section 14.0, Mineral Resource Estimate*. This section has been prepared for Banyan by Armitage. The authors, Carne, Gray and Armitage are all Qualified Persons. Mr. Armitage and Mr. Carne are independent of Banyan Gold Corp.

This report was produced for the purpose of supplying updated exploration information and recommendations for further work to the shareholders of Banyan. The report was written in compliance with disclosure and reporting requirements set forth in the Canadian Securities Administrations' current "Standards of Disclosure for Mineral Projects" under provisions of National Instrument 43-101, Companion Policy 43-101 CP and Form 43-101 F1. It is a compilation of publicly-available assessment reports filed with the Yukon Mining Recorder for mineral claim tenure credit, unpublished internal company reports and property data provided by Banyan; supplemented by publicly-available government maps and scientific publications. The supporting documents are referenced in appropriate sections of this report. Carne visited the Hyland Gold Project on July 25 and 26, 2017 accompanied by Banyan Vice-President and geologist Paul D. Gray. Carne also has extensive personal knowledge of the Project from his participation in and/or management of exploration programs on the property in 1981, 1985, 1986, 1990 and 2001. Armitage visited the Project in the company of Paul Gray on October 12, 2011 and September 20, 2017. As Armitage visited the Hyland Gold Project towards the end of the 2017 drilling program, there has been no significant subsequent exploration, including drilling, on the Main Zone since Armitage visited the property that would compromise or affect the Resource calculation carried out in 2018.

2.5 Units of Measure and Abbreviations

Units of measure are metric. Assays and analytical results for precious metals are quoted in parts per million ("ppm") and parts per billion ("ppb"). Parts per million are also commonly referred to as grams per tonne ("g/t") in respect to gold and silver analytical results. Gold endowment may be referred to as ounces (Oz). Assays and analytical results for base metals are also reported in percent (%). Temperature readings are reported in degrees Celsius (°C). Lengths are quoted in kilometres ("km"), metres ("m") or millimetres ("mm"). Specific gravity measurements are reported in tonnes per cubic metre (t/m³). All costs are in Canadian dollars. Weights of metallurgical reagents are quoted in kilograms per tonne (kg/t).

3.0 RELIANCE ON OTHER EXPERTS

The Authors rely on information from reports prepared by or for Banyan which detail surface and drill results and resource calculations, as well as other historical reports about the Project. Banyan has also provided a library of historical internal company reports that are not in the public domain. The Authors have reviewed this material and believe that the relevant data has been collected in a careful and conscientious manner and in accordance with the standards set out in NI 43-101; and when data collection precedes the implementation of NI 43-101, that it was collected in accordance with contemporary industry standards. When appropriate the Authors have relied upon information previously reported in historical reports, including text excerpts and direct reproduction of figure information to illustrate discussions in the text. Much of this report is compiled from an independent Technical Report for Banyan by Armitage and Gray (2012b) dated November 2, 2012 and filed on SEDAR. Armitage is also an author of the present report. Figures that accompany this report were drafted by Banyan staff with the instruction and supervision of Carne and/or Gray.

Mineral claim information was provided by the office of the Yukon Mining Recorder via its interactive web site. Approximate claim locations shown on government claim maps and referred to on maps that accompany this Technical Report have not been verified by accurate surveys.

Information concerning claim status and ownership which are presented in Section 4 below have been provided to the Authors by Banyan and have not been independently verified by the Authors. However, the Authors have no reason to doubt that the title situation is other than what is presented here.

4.0 PROPERTY DESCRIPTION

4.1 Description

The Hyland property is located in the Watson Lake Mining District of southeast Yukon (Figure 4.1), approximately 74 km northeast of the community of Watson Lake (Figure 4.2). It consists of 3 discrete claim blocks (Figures 4.3 and 4.4). Individual claim data is given on Table 4.1.

Figure 4.1: Yukon-Scale Project Location Map

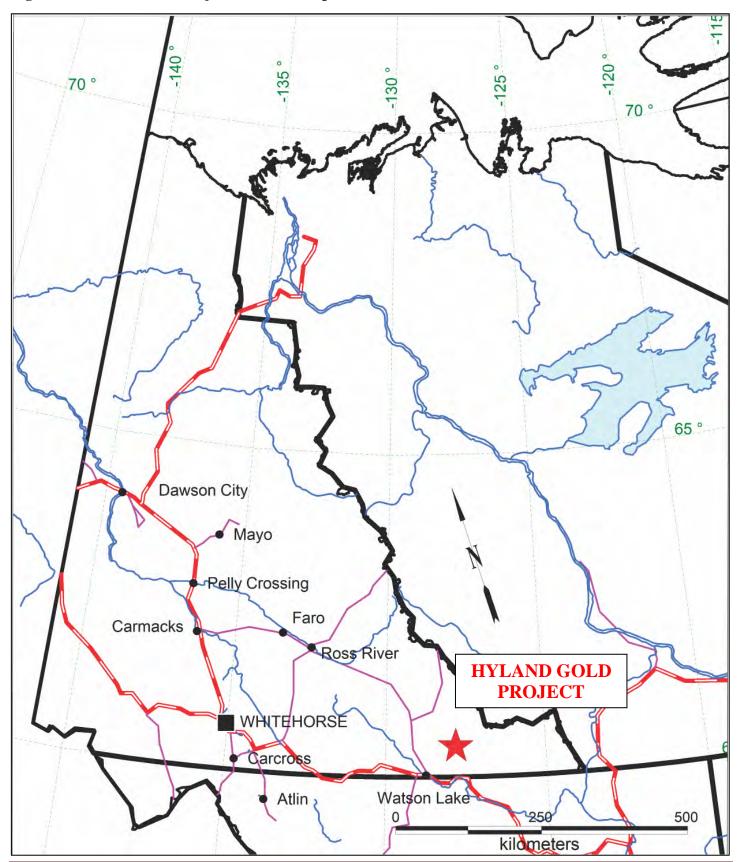


Figure 4.2: Project Regional Location Map

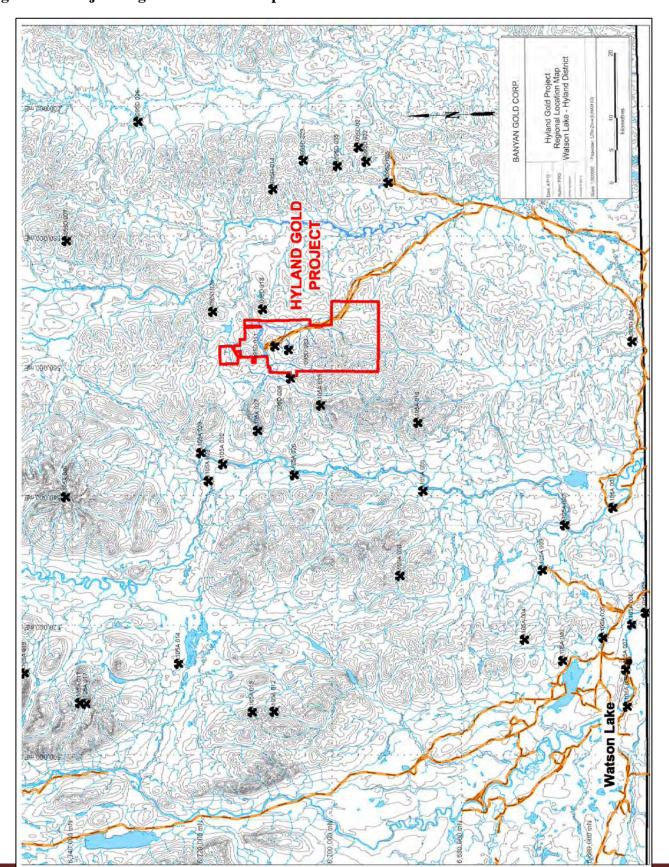


Figure 4.3: Hyland Gold Project Mineral Claims Location Map – North Sheet

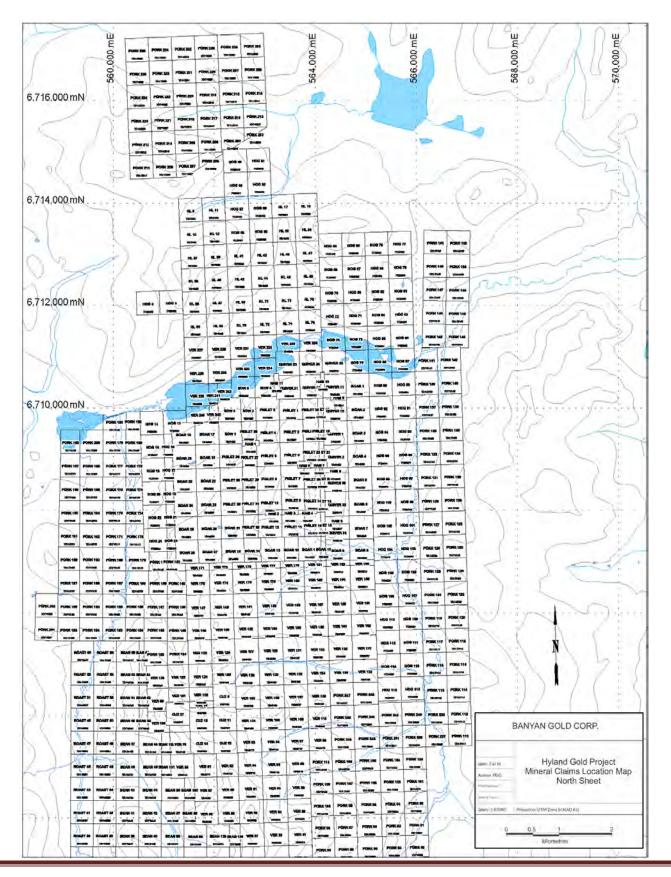
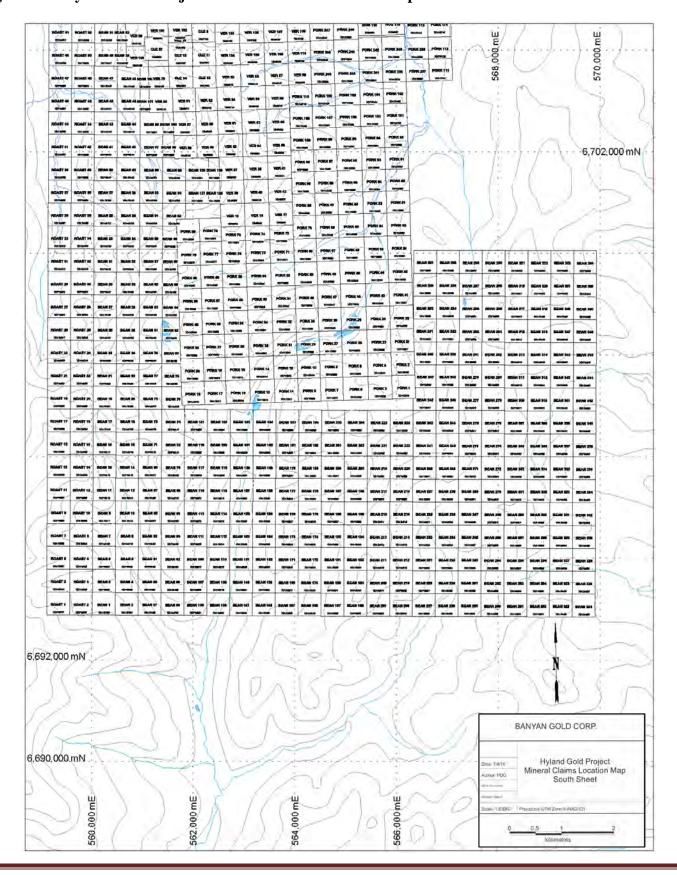



Figure 4.4: Hyland Gold Project Mineral Claims Location Map – South Sheet

Block 1: 299 contiguous un-surveyed quartz mineral claims (~5,500 hectares), located in the Watson Lake Mining District. The registered owner of the claims is Banyan Gold Corp. Banyan's 100% ownership is subject to an assignment of an Option agreement between StrataGold Corporation ("StrataGold") - now Victoria Gold Corp. ("Victoria Gold") and Banyan Gold Corp. ("Banyan"), which is described in the following Section.

Block 2: 193 contiguous un-surveyed contiguous mineral claims (~4,030 hectares), located in the Watson Lake Mining District. The registered 100% owner of the claims is Banyan. These claims fall with the area of interest of StrataGold (now Victoria Gold) and they are subject to the Option agreement signed by StrataGold, Victoria Gold and Argus, which is described below.

Block 3: 435 contiguous un-surveyed quartz mineral claims (~9,090 hectares), located in the Watson Lake Mining District. The registered owner of the claims is Banyan Gold Corp., which holds an undivided 100% interest.

Required work expenditures are \$100 per claim for each year of assessment to be applied to the claim. A maximum of five years of assessment credit can be applied to each claim in the year of their expiry. A fee of \$5 per claim per year is applied to all assessment filings. Prior to the anniversary date, a statement of proof of the required work expenditures must be provided to the Mining Recorder in order to maintain the claims in good standing. A report describing the work carried out on the claims must then be submitted to the Mining Recorder within six months of filing for assessment.

The location of quartz claims in the Yukon is determined by the position of initial and final claim posts on the ground along a straight location line not exceeding 1500 feet. None of the Hyland Gold Project claims have been surveyed. The quartz claims confer rights to mineral tenure, whereas surface rights are held by the Yukon Territory.

4.2 Royalty Agreements

In December 2009, Argus Metals Corp. signed an option agreement to earn a 100% interest in the Hyland Gold Project, Yukon Territory from StrataGold Corporation, a wholly owned subsidiary of Victoria Gold Corp. Under the terms of the agreement, Argus had the option to earn a 100% interest in the Hyland Gold Project, as it then existed, by incurring certain exploration expenditures, making cash payments and issuing shares.

As at October 31, 2011, Argus had completed \$3,220,601 of exploration expenditures, thereby completing its expenditure obligations in relation to the option agreement. On February 15, 2013, Banyan (then Banyan Coast Capital) completed its Qualifying Transaction by completing a Definite Assignment and Transfer Agreement with Argus to acquire a 100% interest in the Hyland Gold project.

Victoria Gold Corp. (via its subsidiary StrataGold) has retained a capped 2.5% net smelter royalty of which 1.5% can be purchased at any time for \$1 million.

The property is also subject to a 1% and 0.25% NSR on all core claims payable to historical property owners Pitchblack Resources Ltd. and Strategic Metals Ltd. respectively. Additionally, there is a 1% NSR on 88 of the current claims payable to Adrian Resources Ltd. that is capped at \$1.5 million.

An area of interest of 1 km on the project in favour of Victoria Gold surrounds the original 299 mineral claims. See Appendix 2 for a detailed review of these Royalty Agreements and included mineral claims.

All requirements of this option agreement have been satisfied.

4.3 Environmental Liabilities and Permits

Ownership of Quartz claims in Yukon confers rights to mineral tenure, whereas surface rights are held by the Crown in favour of Yukon Territory. A Quartz Mining Land Use Approval permit is required to conduct exploration in Yukon. A Class III Quartz Mining Land Use Approval permit is in place for the Hyland property (LQ00462) and expires on April 17th of 2027, and all contemplated exploration activities will have to be in compliance with terms and conditions set out in the land use permit. In Addition, Banyan holds a right-of-way permit (LUP 2017-F774) that allows winter trail access along an existing access road from the Coal River Road to the Hyland Gold Project; this permit expires December 31, 2019 and is renewable bi-annually.

A temporary exploration camp, complete with temporary buildings and wooden platforms for wall tents, is located along the south shore of Quartz Lake. This site has been used for accommodation of exploration crews since the early 1970's. In addition to the camp facility, there is an area for storage of drill core. The camp and drill core lay down area will have to be left in a manner that satisfies conditions set out in the land use permit prior to the expiry of the permit or the expiry of consecutively succeeding land use permits.

There is a medium sized bulldozer, a small excavator and a diamond drill along with associated tooling, supplies and support equipment currently stored on the property. These will have to be removed from the site prior to the expiry of the current or succeeding land use permits.

Trenches and roads, whether historical or constructed under the current land use permit, will be annually required to be left in a manner that will not promote erosion under terms of the existing or anticipated succeeding land use permits.

Petroleum products are stored on the property in compliance with terms of the existing land use permit. All petroleum products and storage containers for petroleum products will be required to be removed from the site prior to the expiry of the current or anticipated succeeding land use permits.

The Hyland Gold Project is within the Traditional Territory of the Liard First Nation, which is part of the Kaska Nation. Banyan has maintained good working relationships with the Liard First Nation, and Banyan has no reason to believe that the First Nation will not support development of the project (P. Gray, pers. com. 2016).

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Project Access

The Hyland Gold Project is located in southeast Yukon approximately 74 km northeast of Watson Lake, which lies along the Alaska Highway. It is centered at 60° 30'18" north latitude and 127° 51' 24" west longitude on NTS Map Sheets 95 D/05 and 95 D/12. The property is accessible by float plane from Watson Lake to Quartz Lake, (also known as Hulse Lake) or by helicopter from Watson Lake. A 40 km long winter road built in 1989 provides access to the property from the government maintained Coal River Road at Km 35 from the junction of

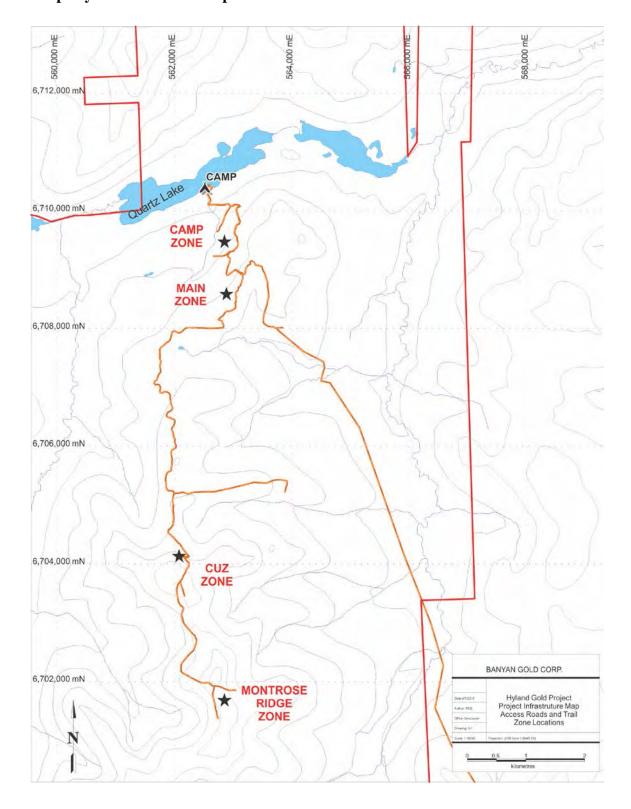
the Coal River Road and the Alaska Highway at Contact Creek. Both the Coal River Road and the winter road to the property are passable by 4x4 vehicles for most of the year except for a swampy section between Km 1 and 3 on the winter road that normally restricts traffic to the months of December, January, February and March. The winter road was utilized in March 2015 to mobilize heavy equipment to support the recent trenching and diamond drilling program on the Project (Gray, 2015). The winter trail connects to a network of drill roads over the Main Zone that leads down into the exploration camp on Quartz Lake (Figure 5.1).

5.2 Climate

The Hyland Gold Project area is subject to a continental climate with long cold winters and warm dry summers. The average annual precipitation on the property is about 450 mm occurring mostly as rain in the warmer months. In the winter, the snowpack rarely exceeds 1 m in depth. Permafrost occurs irregularly across north facing slopes. The lakes are typically ice free and serviceable for float planes by early June and they begin to freeze in early November.

5.3 Local Resources and Infrastructure

A 35 person exploration camp is located on the south shore of Quartz Lake (Figure 5.1), consisting of three four person cabins and six- four person tent platforms. Dry and kitchen/dining facilities were constructed in 2011. Two storage sheds, a geology shack, a dedicated first aid building and core logging and cutting facilities complete the buildings on site. A compositing toilet and a 16 kVA 220/110V generator complete the physical infrastructure in the camp. The camp can be brought up to a fully operational status with a four person team in three days in normal summer weather conditions (Gray, 2015).


There is a medium sized bulldozer, a small excavator and a diamond drill along with associated tooling, supplies and support equipment currently stored on the property.

The surface rights are held by the Yukon government and any exploration, development or mining operations require regulatory approval. There is no grid supplied electrical power available. Water for exploration drilling is available from small lakes and streams on the property. There are ample areas suitable for plant sites, tailings storage, and waste disposal areas should commercial production be contemplated.

5.4 Physiography, Elevation and Vegetation

The Project covers moderately rugged terrain with elevations that range from 920 m on the shores of Quartz Lake to 1,830 m at the highest peak on the property (Figure 5.1). Tree line starts at approximately 1,450 m where alpine brush and vegetation give way to a mix of black spruce, alder, willow, pine, white spruce and moss depending on the moisture content and aspect of the slope. Subcrop is abundant above tree line with some outcrop below tree line however bedrock exposure is generally limited to small cliffs and creek cuts. The area underwent glaciation during the Pleistocene with ice movement from the northwest to southeast. Most steep north facing slopes are free of glacial till but south and west facing hillsides display varying thicknesses of glacial debris. A prominent terrace of glaciofluvial material wraps around the hillsides at about 1,065 m elevation in the Quartz Lake valley (Armitage and Gray, 2012b).

Figure 5.1: Property Infrastructure Map

6.0 HISTORY

Mineral exploration in the Hyland Gold Project area began in the late 1800's with the discovery of the McMillan zinc-lead-silver deposit 5 km west of the current Project area. Drilling conducted intermittently at the McMillan prospect since the late 1940's by Liard River Mining Company Ltd. has defined a non-compliant and unclassified historical resource of 1.1 million tonnes grading 8.5% zinc, 4.1% lead and 62 g/t silver in the Main Zone and 0.4 million tonnes grading 1.7% zinc, 9.3% lead and 214 g/t silver in the South Zone. Liard River also explored parts of the current Project area, including the Main Zone. The focus of their exploration there was base metal mineralization and they employed a mix of geological mapping, hand trenching, soil sampling, an EM survey and diamond drilling of four holes. Results were not encouraging and claims covering part of the current Project area were allowed to lapse in 1955 (Carne, 2000).

In July 1973 Hyland Joint Venture (HJV) staked the Porker claims to cover a lead-zinc exploration target near what is now the Main Zone, following up on the Liard River work in the area. Work completed by the joint venture under the supervision of Archer, Cathro & Associates Limited ("Archer Cathro") over a three year period ending in 1975 included prospecting, geological mapping, grid soil sampling, gravity surveys and 303 m of diamond drilling in four holes. Results of this work outlined widespread arsenic soil geochemical anomalies with several high gold values, but HJV was not interested in pursuing gold exploration and no further work was undertaken (Carne, 2000).

Exploration in the area was renewed to focus on potential gold mineralization in 1981, beginning with the staking and exploration of the Cuz and Quiver claims by Archer Cathro on behalf of Kidd Creek Mines Ltd. ("Kidd Creek"). These claims were staked to cover the gold-arsenic anomalies identified by HJV located south and east of the Porker claims. Kidd Creek contracted Archer Cathro to perform geological mapping and grid soil sampling the following year that defined a 450 m long gold-arsenic-bismuth geochemical anomaly on the Cuz property and scattered, weakly to moderately anomalous gold values on the Quiver claims (Archer and Carne, 1982). No further work was done on the properties until Kidd Creek performed follow-up prospecting and rock sampling on the Cuz property in 1985. When a bedrock source for the anomalous gold-arsenic-bismuth geochemistry was not located, claim ownership was transferred to Archer Cathro. In the interim, Archer Cathro had also re-staked the Porker claims on their expiry in 1984 as the Piglet 1-32 claim group (Carne, 1985) (Figure 4.3).

In 1986 Archer Cathro acquired the Quiver claims east of the Piglet block and sold the entire property comprised of 88 claims to Silverquest Resources Ltd. ("Silverquest") who performed prospecting, soil sampling and hand trenching that same year. The following year Hyland Gold Joint Venture (HGJV) was formed, comprised of Silverquest, Novamin Resources Ltd. ("Novamin") and NDU Resources Ltd. ("NDU") and it carried out a program of soil geochemistry, bulldozer trenching and road construction (Dennett and Eaton, 1987). Novamin withdrew from the HGJV in 1988 and was replaced by Adrian Resources Ltd. ("Adrian") as a joint venture partner. That year soil sampling and several ground geophysical surveys including magnetic, IP and EM were conducted with concurrent bulldozer trenching, diamond drilling (376 m in four holes) and road construction (Dennett and Eaton, 1988). The road construction continued into the early winter of 1989, culminating with the completion of a 40 km long winter road from the property to the Coal River Road (Figure 4.2). The winter road facilitated the mobilization of a truck mounted reverse circulation (RC) drill rig in 1990 and completion of 3,656 m of RC drilling in 41 holes (Sax and Carne, 1990).

In 1994, Archer Cathro sold the Cuz property, which had been reduced to seven claims covering the main gold in soil geochemical anomaly to Nordac Resources Ltd. (now Strategic Minerals Ltd.).

Hemlo Gold Mines Inc. ("Hemlo") optioned the HGJV property from Cash Resources Ltd. ("Cash") (restructured and renamed from Silverquest) in 1994 and in 1995 completed a geological mapping program followed by diamond drilling program of 439 m in three holes (Bidwell, 1995). Results were negative and the option expired without Hemlo earning an interest in the property. In 1998 Cash purchased United Keno Hill Mines Ltd. interest in the property (it having previously merged with NDU) and in 1999 further consolidated ownership of the Hyland Gold property by purchasing Adrian's working interest (Carne, 2000).

In 1994, contemporaneous to Hemlo's option deal with Cash, Westmin Resources Ltd. ("Westmin") became active in the area by staking 416 claims surrounding the HGJV and Cuz properties. Some of these claims form part of the current Project property. Work by Westmin that year included an airborne geophysical survey, detailed geological mapping and soil sampling (Tucker and Pawliuk, 1995). Further airborne geophysical surveys (flown by Newmont for Westmin) and soil sampling were completed in 1995 that led to the staking of additional claims, geological mapping, rock sampling, reconnaissance soil sampling and power auger soil sampling in following years (Pawliuk, 1996 and Jones, 1997). Expatriate Resources Ltd. ("Expatriate") purchased Westmin's property interests in the spring of 1999 and conducted a small prospecting and sampling program that summer (Lustig et al. 2003).

In March of 2000 a new joint venture was created to explore the HGJV, Cuz and surrounding Expatriate claims with the following interests: 55% Cash Minerals Ltd. (formerly Cash Resources), 31% Expatriate and 14% Strategic Metals. This property eventually became what is now the core of the current Hyland Gold Project. The following year the joint venture conducted a small exploration program consisting of re-mapping the bulldozer trenches, hand trenching and sampling of the geochemical anomalies identified by Westmin. By the end of January 2003 Expatriate had acquired 100% interest in the then Hyland Gold Project and sold it in its entirety to StrataGold Corporation ("StrataGold") (Lustig et al, 2003).

In 2003 StrataGold completed a program of diamond drilling totalling 2416 m in 12 holes (Hladky, 2003 and Lustig et al, 2003). The following year StrataGold completed 15.72 line kilometres of IP/Resistivity surveying divided into six east-west trending lines over the main zone. Results of the geophysical survey were followed up with 1800 m of diamond drilling in eight holes. (Hladky, 2004). StrataGold drilled four diamond drill holes in 2005 with a total length of 985 m focused on discovering new gold mineralization east of the Main Zone and at the Cuz anomaly (Sparling and Whitehead, 2007).

Argus Metals Corp. ("Argus") optioned the Hyland Gold Project from Victoria Gold Inc. (which had previously acquired StrataGold) in 2009. Argus completed 20 diamond drill holes (3,953 metres) on the Project in 2010 and 2011 in addition to Transient Electromagnetic (TEM) geophysical surveys over the Main Zone and north of the Cuz anomaly. Promising intercepts of gold and silver mineralization were encountered in the Main Zone drilling and a gold mineralization discovery was made by drilling at the Cuz Zone (Armitage and Gray, 2012a).

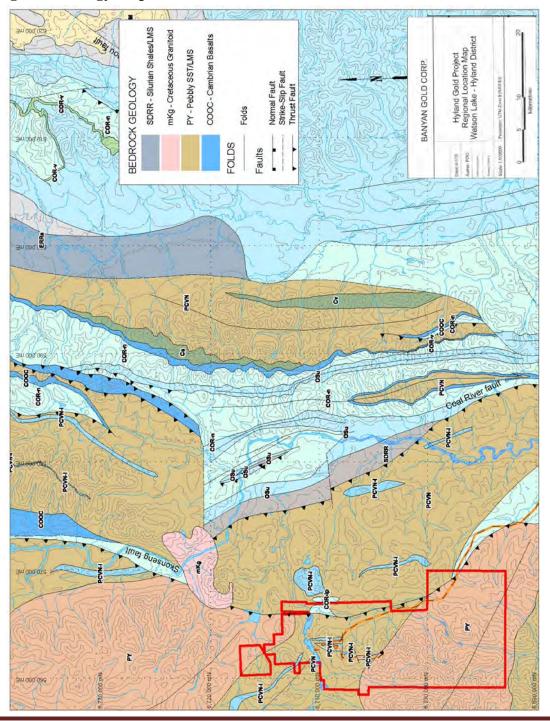
On February 15, 2013, Banyan (then Banyan Coast Capital) acquired a 100% interest in the Hyland Gold Project. Banyan completed a resource calculation of the Main Zone in 2012, prior to the closing of the property acquisition (Armitage and Gray, 2012b) and has conducted exploration programs on the Project in each subsequent year (Gray, 2014a; Gray, 2014b; Gray, 2015; Gray), 2016 and Gray, 2017). This work consisted of grid soil sampling and ridge and spur soil sampling, which lead to the prospecting discovery of gold mineralization south of the Cuz Zone. The newly discovered Montrose Ridge Zone was explored with excavator trenching in 2015 and 2016 after being connected with a bulldozer trail to the existing road network. Banyan also completed diamond drilling on the Camp Zone (two holes) and at the north of the Main Zone (one

hole) in 2015. In 2016, Banyan completed 475 m of diamond drilling consisting of three holes proximal to the Main Zone Gold-Silver Deposit with one hole designed to provide material for metallurgical test work. Trenches were also completed at the Camp Zone and Montrose Ridge Zone, following up on Arseinc+Gold-insoils geochemical anomalies. In 2017, Banyan completed 3,847 m of diamond drilling from 25 drill holes focused on in-fill, step-out exploration and dedicated metallurgical drilling concentrated on the Main Zone gold-silver deposit.

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

The Hyland project is located in southeastern Selwyn Basin; a Late Precambrian to Middle Devonian tectonic element characterized by deposition of deep water marine sediments. Deposition into the basin was restricted by the Cassiar Platform to the southwest and the Mackenzie Shelf to the east. It is considered part of ancestral North America and records several episodes of pericratonic rifting with subsequent subsidence. Generally, the basin fill comprises shale, limestone, chert and grit that have been subdivided across the basin into many formations and distinct facies that may or may not be time-equivalent. Recent regional scale geological mapping that includes the Project area (Figure 7.1) by Yukon Geological Survey (Pigage et al., 2011) provides a framework for the regional and property-scale descriptions given below.


On a regional scale, the Hyland Gold Project is located in an area of Selwyn Basin underlain by Precambrian Hyland Group Yusezyu, Narchilla and Vampire Formations ("Fm"), Lower to Middle Cambrian Sekwi Fm, Cambrian to Ordovician Otter Creek and Rabbitkettle Fm, Ordovician Sunblood Fm, Silurian to Devonian Road River Group and undivided time-equivalent Nonda-Muncho-McConnell-Stone-Dunedin Fm, Devonian to Mississippian Earn Group and local Eocene sedimentary sequences in Rock River Basin (Figure 7.0). The older sedimentary rocks were intruded by Cretaceous granite, quartz monzonite and granodiorite plugs assigned to the Selwyn Plutonic Suite. Collectively, they record a quiescent, subsiding continental margin punctuated by transgressive and regressive cycles, rifting, collision of allochthonous terranes, mountain building and magmatism (Gordey and Anderson, 1993).

The lower Hyland Group Yusezyu Fm (**Py**) comprises quartz-rich sandstones ranging from medium grained sand to pebble conglomerate sized clasts. Distinct, opalescent blue spherical quartz grains are common. The bottom of the formation is not exposed in the Basin but the formation is estimated to be greater than 3 km thick. At the top of the Yusezyu Fm, a crystalline limestone or calcareous sandstone unit (**PCvn-I**) is generally present. This unit marks the transition from Yusezyu Fm sandstones to finer grained clastic rocks of the Narchilla Fm (**PCvn-m**). In the Project area the Narchilla and Vampire Fm are undivided with the former representing the basinal facies and the latter the basin to shelf transitional facies. The Narchilla Fm consists of maroon and green phyllite, silty phyllite and minor quartzose sandstone to pebble conglomerate. Narchilla limestone and clastic rocks are locally interfingered. The Vampire Fm (**PCvn**) consists of green phyllite, silty phyllite, minor quartzose sandstone to pebble conglomerate, and bedded limestone (Black, 2010).

Lower Cambrian rocks interpreted to be correlative to the Sekwi Fm (**Cs**) conformably overlie the Narchilla-Vampire sequences. They consist of green to tan brown weathering phyllite, siltstone and arkose. The finer grained lithologies are locally calcareous and/or fossiliferous. Locally a mafic volcanic sequence of tuff, flows and pillowed lavas (**Cv**) occurs near the top of the Sekwi Fm.

The Lower Cambrian rocks are unconformably overlain by Cambrian to Ordovician rocks including the Otter Creek Fm (**COoc**) comprising resistant light grey limestone and buff coloured dolostone. Overlying these rocks is the Rabbitkettle Fm (**COR**), divided into: a volcanic facies (**COR-v**) comprised of mafic tuff, breccias and amygdaloidal pillowed flows; a west facies (**COR-lp**) including platy phyllitic limestone, calcareous phyllite and light grey, yellow weathering silty limestone; and an east facies (**COR-n**) that is more calcareous comprised of wavy banded, nodular silty limestone and pale grey bedded limestone.

Figure 7.1: Regional Geology Map

The Ordovician is represented by the Sunblood Fm comprised of two members: a mafic volcanic member comprised of basaltic tuff, breccia and amygdaloidal pillowed flows (**OSu-v**), and a laminated and/or bioturbated buff to orange weathering dolostone or limestone (**OSu**). Conformably overlying the Sunblood Fm is the Silurian to Devonian Road River Group (**SDRR**) comprised of dark grey to black calcareous or dolomitic locally graptolitic recessive shale, siltstone and bedded chert. The laterally equivalent carbonate dominated Silurian to Devonian unit **SDc** (undivided Nonda-Muncho-McConnell-Stone-Dunedin Fm) is present to the south and comprises grey thick-bedded dolostone, and black thick-bedded limestone. (Black, 2010).

Devonian to Mississippian extension resulted in sub vertical normal faults of varying orientation that juxtapose deeper basinal rocks against younger lithologies. This geometry effectively preserved Ordovician to Silurian rocks locally and resulted in unconformable relationships between the Hyland and Earn Group clastic rocks elsewhere. The occurrence of abundant debris flows containing car-sized clasts of underlying lithologies are a product of this block faulting.

Mesozoic docking of allocthonous terranes to the southwest of Selwyn Basin resulted in thin-skinned thrusting and folding with eastward displacements upwards of 200 km (Gabrielse, 1991). Related deformation in Selwyn Basin is dominated by the interplay of less competent quartz-poor and competent quartz-rich layered rocks. Large-scale structures consist of thrust-faults, open to tight folds, locally intense small scale folds and zones of closely spaced imbricate thrust sheets. These structures are attributed to Early Cretaceous northeast directed compression pre-dating the extensive plutonism in the basin. Typically a well-developed phyllitic to slaty cleavage is present and is most prevalent in mudstone and siltstone. The dominant fabric in the basin trends northwest and generally dips steeply to the northeast but in places may be shallowly south-dipping. Locally however, structural trends vary and commonly parallel the arcuate Paleozoic shale-carbonate boundary within the Mackenzie Mountains to the east. This results in structural trends that may vary from east-northeast to east-west with northerly, easterly, or westerly vergence of major structures.

Following crustal thickening numerous calc-alkaline plutons were emplaced into the sedimentary package. Cretaceous plutonism in Selwyn Basin progressed from the southeast to the northwest beginning with the emplacement of the Hyland-Anvil (109 – 95 Ma) and Tay River (98 – 96 Ma) suites and culminating with the emplacement of the Tungsten and Tombstone suites ca. 90 – 93 Ma (Anderson, 1983 and 1993). Previously the nearest known intrusion to the Hyland Gold Project was a 15 km diameter stock located 22 km to the west. Recent mapping by Pigage et al. (2011) however, has identified a 7 km x 3 km body granitic body that returned a U-Pb zircon age of 97.8 Ma. This body is the southernmost exposure of Cretaceous granitic rocks along a northeast trending belt of higher metamorphic grade (locally up to garnet-staurolite grade) and Cretaceous magmatism that parallels the Skonseng fault (Figure 7.1).

Regionally, the Hyland Gold Project is located in the hanging wall of an east-verging imbricate thrust system controlled by the Coal River Fault. The surface trace of westernmost fault of this system is located just inside the eastern margin of the property (Figure 7.1). Within the hanging wall the structural grain is largely northwest trending and lineations plunge both to the northwest and to the southwest. The dominantly Precambrian sedimentary rocks of the hanging wall are folded into a series of anticline-syncline pairs that expose the Yusezyu Fm at the core of northwest trending anticlines (Black, 2010).

East of the imbricate thrust system, Cambrian to Devonian rocks with a carbonate shelf affinity contain a north trending structural fabric. Mapped folds are typically tighter with more closely spaced axial planes and east-verging. Lineations plunge north and south likely controlled by their proximity to second-order east-west

trending strike slip faults related to the larger thrust faults. Locally, the strike-slip faulting has up to 3 km of displacement.

7.2 Regional Mineralization and Metallogeny

Selwyn Basin is most well-known for its endowment of sedex zinc-lead-silver occurrences including twelve deposits with proven reserves (Carne and Cathro, 1982). Three of those were past producers. The sedex deposits can be divided into three categories based on their age of formation. Late Cambrian deposits include the Anvil Range Belt, which hosts the former Faro, Grum and Vangorda Mines and the unmined Grizzly Deposit. Early Silurian sedex mineralization occurs at Howards Pass and Late Devonian examples include Tom and Jason at Macmillan Pass. In addition to the sedex deposits the Basin also contains Mississippi Valley Type lead-zinc mineralization and stratiform barite deposits.

The Hyland Gold Project is located at the southeast end of a younger overlapping metallogenic province referred to as the Tintina Gold Belt, comprised of several gold rich districts extending from western Alaska to southeastern Yukon. The belt includes notable gold deposits such as the Donlin Creek deposit, Fort Knox Mine and Pogo Mine in Alaska. In Yukon the Tintina Gold Belt includes the Klondike placer gold district, hard rock gold occurrences including the former Brewery Creek Mine, Mt. Nansen Mine and Ketza Mine, as well as the Coffee, White Gold and Eagle development stage gold projects and the newly discovered Rackla Belt of sediment-hosted gold mineralization. The Tintina Gold Belt is coincident with a belt of extensive mid-Cretaceous and younger plutonism and precious metal deposit types are typically associated with these intrusions in some fashion. The compositions of the intrusive rocks are typically granodiorite, granite and syenite. They are predominantly metaluminous, calk-alkaline to locally alkalic, have low primary oxidation states and typically contain significant crustal contamination (Hart et al, 2000).

The most significant mineral occurrence near the Hyland Gold Project is the Mel deposit, located 12 km east-southeast of the Hyland Gold Main Zone. Stratabound barite-zinc-lead mineralization is laterally extensive within the Cambro-Ordovician Rabbitkettle Fm, but lacks the finely laminated character of typical sedex mineralization; although this may be due to strain-induced recrystallization (Carne, 1976). The Mel Main Zone hosts an Inferred Resource of 5.38 million tonnes grading 6.45% zinc, 1.85% lead and 44.79% barite (BaSO₄), at a cut-off grade of 5.0% zinc-equivalent. Mineralization there consists of coarse-grained sphalerite and galena disseminated throughout a mixture of mudstone, silica-carbonate and coarsely crystalline barite. The Mel Main Zone is open down dip and has good potential to host a larger zinc-lead resource (King and Giroux, 2014).

The McMillan silver-lead-zinc deposit lies 5 km west of the Hyland Gold Main Zone. Two pyritic massive sulphide bodies have been outlined by extensive surface exploration and diamond drilling. A non-compliant, unclassified historical resource of 1.1 million tonnes grading 8.3% zinc, 4.1% lead and 62 g/t silver occurs in strata concordant and discordant mineralization in the McMillan Main Zone. An additional 0.4 million tonnes of similar mineralization grading 1.7% zinc, 9.3% lead and 214 g/t silver occurs in the McMillan South Zone. The deposit is hosted in late Precambrian rocks of the Hyland Group and it has been described as replacement style or manto mineralization developed by hydrothermal fluids ascending along northerly trending fault zones. Unpublished lead isotope studies carried out at the University of British Columbia suggest a poorly constrained Tertiary age of mineralization (Carne, 1985).

7.3 Property Geology and Mineralization

7.3.1 Geology

The Hyland Gold Project is underlain by an interbedded sequence of quartzites, limestones, and phyllites. Individual beds vary from less than one metre to tens of metres in thickness. Several units are mixed, with thinly interbedded phyllitic dirty limestones, calcareous quartzites and phyllites. This stratigraphic complexity coupled with folding and faulting, and a general lack of bedrock exposure makes it difficult to carry out meaningful geological mapping. The underlying bedrock in the central part of the Project area is interpreted by Pigage et al. (2011) to belong to the transition zone between the Yusezyu and Vampire Formations of the Precambrian Hyland Group (Figure 7.2).

In general, a mixed unit of quartzites, phyllites, and limestones appears to be folded about a north-south trending, southeasterly plunging anticline with the Main Zone gold mineralization aligned along its axis. Flanking the mixed unit to the east and west in an overlying relationship is a relatively clean, massive limestone unit. A north-south structural corridor referred to as the Quartz Lake Lineament trends through the core of the Main Zone, coincident with the anticline axis (Figure 7.2), and it is thought to be a major control of mineralization (Carne, 2000).

Previous workers have developed property stratigraphy within the Vampire Fm in the central part of the property that is interpreted to comprise one continuous conformable sequence. The following description in descending stratigraphic order is taken from Carne (2002) and Lustig et al. (2003).

• *Upper Quartzite (Q2)*

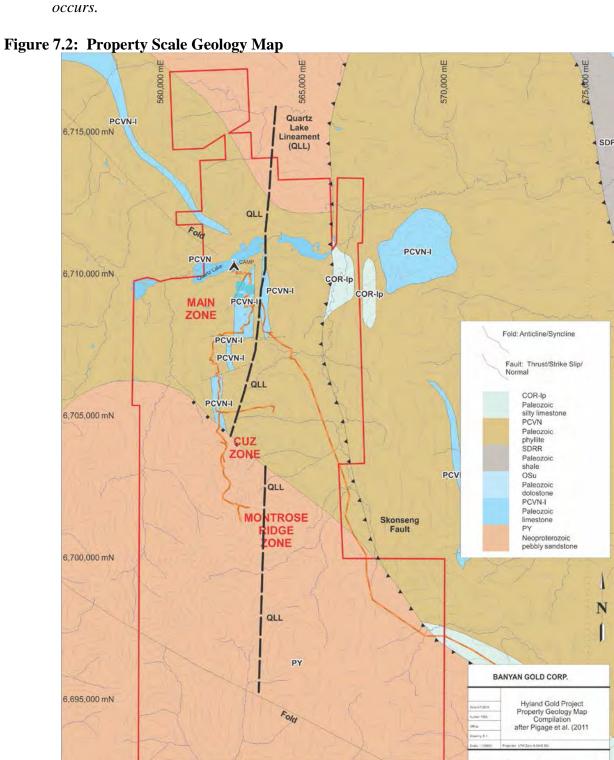
The Upper Quartzite unit consists of blocky weathering, tan, grey and pale green lithic quartzite, orthoquartzite, calcareous quartzite and minor sandstone with phyllitic siltstone and phyllite. The term "quartzite" is used because of the well indurated nature of the clastic units, normally an effect of regional metamorphism. Because of poor natural bedrock exposure on the Project area, property scale geological mapping was mostly of exposures created by trenching through overburden within the area of exploration interest as defined by anomalously high arsenic in soils. The highly indurated nature of the "quartzite" is possibly an effect of hydrothermal recrystallization and pervasive silicification adjacent the mineralized structures. Regionally, these rocks are more appropriately termed "sandstones".

• *Upper Limestone (L1)*

The Upper Limestone unit is a dark shaly and gritty fissile limestone with common phyllitic partings. Bedding ranges from 1 to 100 m thick. A horizon of phyllite and interbedded quartzite occurs near the base of this unit.

• *Upper Phyllite (P2)*

The Upper Phyllite consists of thinly laminated silver-grey, green and black, locally graphitic or calcareous phyllite. This unit contains quartzite beds up to 5 m thick.


• *Main Quartzite (Q1)*

The Main Quartzite is an orthoquartzite greater than 20 m thick. Phyllite becomes more prevalent towards the top of the unit with individual phyllite units up to 10 cm thick.

• Lower Limestone (L2)

The Lower Limestone is a black to grey, platy, silty limestone that is typically weakly recrystallized.

• Lower Phyllite (P3)
The Lower Phyllite consists of interbedded siltstone, sandstone, greywacke, and quartz-lithic granule conglomerate. Locally, this unit may resemble a quartzite where strong quartz flooding or alteration

Although the Quartz Lake area is located near the southern end of a belt of Cretaceous granitic plutons, there are no large intrusive bodies exposed in the Project area per se. Evidence for buried intrusions on the claim block includes a few narrow mafic dykes, magnetic lows outlined by geophysical surveys and a 2 km² area east of Quartz Lake where sedimentary rocks are locally thermally metamorphosed to garnet-staurolite schist (Carne, 2002).

The most prominent structural feature in the Project area is a north trending recessive topographic linear (Figure 7.3) that probably corresponds to a steeply dipping structural zone (Carne, 2002). The linear, called the Quartz Lake Lineament (QLL), is usually filled by glacial till or talus, but where bedrock is exposed in a number of trenches across the Main Zone, it consists of a series of anastomosing, sub parallel faults. Sense of motion on the structures is unknown but local stratigraphy appears to have negligible offset. The QLL bisects the Main Zone and strikes toward the Cuz Showing, where it is cut by a normal fault that juxtaposes Yusezyu Fm against the Vampire Fm stratigraphy (Figure 7.2). The QLL also coincides with resistivity and magnetic lows in the vicinity of the Main Zone.

7.3.2 Alteration

Two styles of hydrothermal alteration related to gold mineralization occur on the Hyland Gold Project. Tourmaline+/-arsenopyrite-pyrite-silica alteration is ubiquitous within mineralized intervals. The alteration locally eradicates primary sedimentary features and imparts a light greyish brown colour on all lithologies. White quartz veins cut this alteration and adjacent less altered intervals, but they are interpreted to be part of the same alteration assemblage. Sulphide minerals occur as anhedral fine to medium grained aggregates disseminated throughout the altered intervals and in dismembered irregular veins. Tourmaline is visible only in thin section and consists of very fine grained anhedral to euhedral crystals occurring in aggregates or disseminated throughout the groundmass. Notably, the eradication of sedimentary structures in strongly altered zones can give the false impression that the original rock type is a quartzite. Their primary distinction is the lack of strain features in the secondary silica. (Black, 2010).

Patchy to pervasive, very fine grained iron carbonate alteration has not been examined in thin section but is observed in drill core. The iron carbonate alteration imparts a light beige wash across the drill core and appears antithetic to sulphide mineral formation as well as overprinting the silica alteration. Furthermore, titanite-quartz-carbonate veins, thought to be contemporaneous to the iron carbonate alteration, cross cut quartz and quartz + sulphide veins. For these reasons the pervasive iron carbonate alteration is interpreted to be sulphide destructive and post-dates the earlier tourmaline+/-arsenopyrite-pyrite-silica alteration (Black, 2010).

7.3.3 Mineralization

7.3.3.1 Introduction

Primary gold mineralization occurs in at least four different settings on the Hyland Gold Project:

- (1) breccia zones, veins and auriferous sulphide disseminations, best developed in silicified quartzite or jasperoid altered zones in phyllite;
- (2) north-trending recessive weathering fault zones in the QLL containing pods of semi-massive to massive pyrrhotite \pm pyrite;

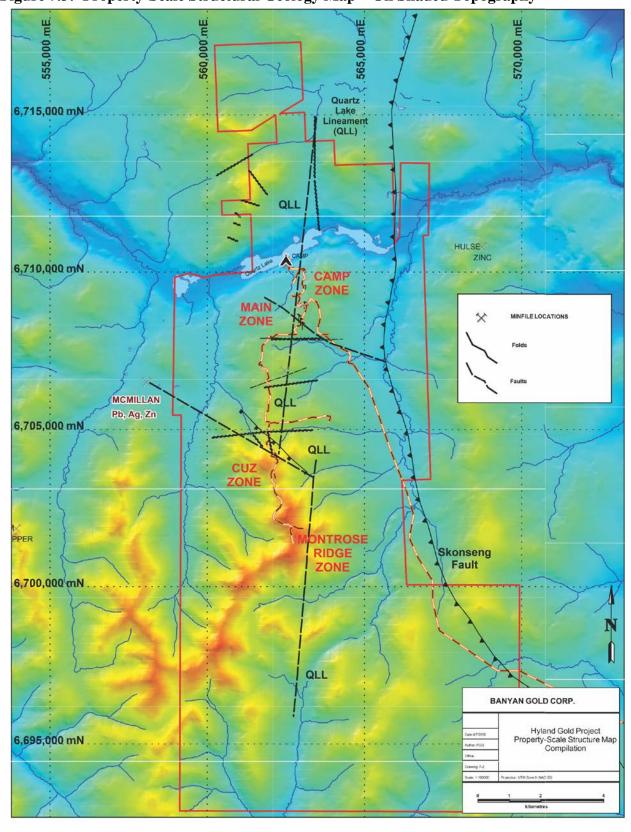


Figure 7.3: Property-Scale Structural Geology Map – On Shaded Topography

- (3) manto-like siderite replacement bodies up to 40 m thick, formed along limestone-quartzite contacts in a corridor along the QLL. These contain relatively minor amounts of pyrite, pyrrhotite and arsenopyrite;
- (4) narrow quartz veins containing erratic pods of nearly massive jamesonite, samples of which assayed up to 41% lead, 154.3 g/t silver and 3.4 g/t gold.

All types of mineralization are oxidized to varying depths, depending on fault-induced fracture density and local degree of glacial erosion. Character and intensity of mineralization depends on the character and chemistry of the host rocks. To that extent, the gold mineralization is both stratigraphically and structurally controlled (Carne, 2000).

7.3.3.2 Main Zone Mineralization

The Main Zone trends southerly across a low, heavily vegetated hilltop (Figure 7.2). Gold mineralization occurs within the core and nearby limb areas of a slightly overturned anticline. Best values are associated with three parallel, strongly fractured and brecciated zones developed along the QLL in the core of the anticline in the Lower Quartzite or jasperoid replacement horizons developed in the overlying Lower Phyllite. The fault zones are up to 40 m wide and typically consist of recessive weathering, limonitic sand, clay gouge and quartzite fragments (Franzen, 1989). Minor gold mineralization occurs with massive sulphide or siderite altered zones at the base of the overlying Lower Limestone. Pre-glacial weathering and consequent oxidation of sulphide minerals extends to depths of up to 60 m from surface, especially in highly fractured areas. Glaciation has removed most of the oxide facies at lower elevations where fresh pyrite and arsenopyrite are present near surface (Carne, 2000).

The best assays (>5 g/t gold) in the oxide zone are returned from samples containing scorodite stained grey quartz veins with abundant boxwork cavities after sulphide minerals. Moderately mineralized intervals grading 1.0 to 5.0 g/t gold occur within brecciated jasperoid altered horizons adjacent to higher grade vein mineralization. The jasperoid horizons are surrounded by sericite-clay altered rocks which carry gold grades between 0.3 and 1.0 g/t. Massive sulphide and siderite altered limestone typically contains 0.3 to 1.0 g/t gold (Carne, 2000). Although structural complexity makes unit by unit stratigraphic correlation in the Main Zone difficult, it appears that the best mineralization is in 3 m to 20 m thick, stratabound zones that may be linked by irregular, steeply dipping breccia bodies (Carne, 2002). Oxidation extends much deeper in the highly fragmented gold-rich central zone than it does in the less well fractured weakly mineralized adjacent sections.

Sulphide mineralization and cross-cutting relationships among sulphide bearing veins are complex. There are at least three generations of veining present in the samples sent for petrographic analyses. They have been referred to as Types I, II and III. These veins overprint disseminated stratabound pyrite mineralization that occurs as aggregates of anhedral pyrite disseminated along bedding planes in less altered, layered sedimentary rocks. *Type I veins* consisting of ill-defined or discontinuous aggregates of fine to medium grained, intergrown, anhedral pyrite and arsenopyrite. These are in turn cross cut by and dismembered by *Type II veins* consisting of quartz and fine grained sulphides (pyrite +/- arsenopyrite +/- chalcopyrite +/- bismuthinite), +/- tetrahedrite and +/- native gold. *Type III veins* consist of quartz +/- Fe-carbonate +/- pyrite +/- titanite and cross cut all other vein types and mineralization (Mauler-Steinmann, 2011).

Ore microscopy work has identified eight gold grains 5 to 35 microns in size in one sample. Gold grains typically occur at pyrite-arsenopyrite grain boundaries or less commonly as inclusions within pyrite and are thought to be genetically related to the pyrite. Gold shows a strong geochemical correlation with bismuth and a

moderate correlation with arsenic, copper and silver. Bismuthinite was identified in two petrographic samples that returned 4 g/t and 2 g/t gold and arsenopyrite is a common constituent in the quartz-sulphide stockwork associated with the Main Zone mineralization (Mauler-Steinmann, 2011).

The preferred host of gold mineralization is quartz veined and brecciated zones in the Lower Quartzite, with lesser mineralization in jasperoid altered or quartz flooded horizons in the overlying Lower Phyllite unit. Minor gold mineralization occurs in the capping Lower Limestone. Sax and Carne (1990) noted that tenor of mineralization is correlative with competency of the host unit. The brittle quartzites are heavily fractured in the core of the anticline, allowing for open space for hydrothermal deposition. The more ductile phyllite and limestone intervals are less permeable and offer little open space for mineral deposition.

The best gold grades are accompanied by highly anomalous values of arsenic and bismuth. The recessive linear is flanked by resistant zones, several tens of metres wide of silicified but relatively unfractured rock that carries moderately anomalous gold values but with moderately to strongly anomalous bismuth and arsenic. These, in turn, are flanked by less silicified zones which carry only weakly to moderately anomalous gold. High levels of bismuth and the presence of bismuthinite is often used as evidence for a magmatic origin for gold mineralization. Carne (2000) notes that an association of anomalously high antimony, tungsten and copper values with gold in the Main Zone is also evidence for a magmatic source, at least in part, for the hydrothermal fluids responsible for the gold mineralization. Arsenic, on the other hand can occur in a variety of gold depositional environments (Mauler-Steinmann, 2011). It is also possible that sediment hosted gold mineralization at the Hyland Gold Project is part of a larger system that includes the McMillan silver-lead-zinc manto deposit.

Replacement of the basal part of the Upper Limestone unit by manto-like bodies of siderite up to 20 m thick occurs in a flanking position to the Main Zone mineralization, along the sides of the anticline (Bremner and Oulette, 1990 and Carne, 2000). It is possible, and probable, that the entire Main Zone may have been capped by siderite replacement of overlying limestone before erosion removed all but the flanking bodies. The resulting interpretation is that iron metasomatism is also an integral part of the hydrothermal alteration and mineralization suite at the Main Zone.

7.3.3.3 Camp Zone Mineralization

Oxidized to partially oxidized iron carbonate and/or semi-massive to massive sulphide (mostly pyrrhotite with lesser pyrite and arsenopyrite) bodies occur in limestone peripheral to the north-northeast trending QLL for several hundreds of metres north of the Main Zone. These are accompanied by a more than one kilometre long gold and arsenic-in-soil anomaly that has been tested by wide-spaced bulldozer trenching, RC drilling and diamond drilling between 1986 and the present. This area is collectively called the Camp Zone.

The carbonate, sulphide and oxide replacement zones are shown by mapping and prospecting to be relatively continuous and mappable, following a nearly continuous trend along the QLL (Black, 2010). On surface iron oxide occurs in two bands that strike north and take a bend to the east before returning to a north-northeasterly trend approximately 300 m further on. The western band appears to be thicker (~10 m) with more intense alteration and mineralization. Both contain moderate to intense secondary iron oxide mineralization (limonite, goethite, and locally earthy hematite) and moderate to intense manganese oxides. These manto-like or chimney-like replacement bodies may represent deeper "feeder style" mineralization than the more silica flooded, open space filling style mineralization of the Main Zone.

Drilling campaigns in 1990, 2003, 2004, 2010 and 2015 have tested Camp Zone structure for "feeder zone" sulphide systems. Many of them were short vertical or angle holes that did not exhaustively explore the large-scale target for what will probably be a relatively erratic style of mineralization with strong structural and stratigraphic control. For instance, Hemlo's 1995 surface exploration program targeted jasperoid alteration in a phyllite package along the QLL in the Camp Zone. Elevated gold and arsenic response from the geochemical sampling of the altered phyllites prompted diamond drilling to test for mineralization at depth, believing the jasperoid bodies to be the possible upper manifestation of Carlin-type gold mineralization at depth (Bidwell, 1995). Hemlo modelled the structural setting of the QLL, and associated replacement mineralization and jasperoid alteration, as part of a westerly dipping listric fault system as originally proposed by Bremner and Oulette (1991) (G. Bidwell, pers. com., 1995). Three diamond drill holes were completed in the area in September to October, 1995. Two of the three holes intersected highly pyritic zones but gold assays were low and no further work was carried out. If, as current accepted, the QLL is a near-vertical structural corridor, then deeper levels of the mineralized system would not have been tested by the relatively shallow Hemlo angle drill holes that were collared 300 m or more west of the surface trace of the QLL.

In addition to the jasperoid, carbonate and sulphide replacement style mineralization a few scattered jamesonite veins or pods up to 10 cm wide cut a siderite body exposed in a bulldozer trench about 400 m northeast of the north end of the Main Zone (Carne, 2002).

7.3.3.4 Cuz Zone Mineralization

The Cuz Zone lies about 4 km south of the Main Zone at the intersection of the Quartz Lake Lineament with a southeasterly trending normal fault that terminates or offsets the QLL (Figure 7.2). Host rocks are quartzite, conglomerate and limestone of the Upper Quartzite Unit of the upper Vampire Fm in fault contact with similar rocks of the overlying Yusezyu Fm.

The main expression of the Cuz Zone mineralization is a gold/arsenic soil geochemical anomaly, originally 300m by 700m in area that has since been extended over two kilometres to the southeast along the strike of the southeasterly trending fault. In 2011, Argus Metals' diamond drilling program resulted in the first ever *in situ* gold mineralization discovery at the Cuz Zone (Gray, 2015). Hole HY-12-36 returned 4.5 m grading 1.93 g/t gold from 25.9 to 30.4 m and 4.5 m grading 0.65 g/t gold from 10.5 m to 15 m in the Cuz Zone discovery hole. Drill hole HY-11-37, located 80 m northwest of discovery hole HY-11-36 intersected 6 m grading 1.38 g/t gold from 9.0 to 15.0 m and 1.5 m grading 1.52 g/t gold from 25.50 m to 27.0 m. Drill hole HY-11-38 located 240 m northwest of discovery hole HY-11-36 intersected 3.6 m grading 1.12 g/t gold_from 16.4 to 20.0 m. Complete oxidation of sulphide mineralization in drill core extends to about 20 m from surface, while transition zone incomplete oxidation extends to about 40 m from surface.

Field examination of mineralized talus fragments collected in 2001 revealed two main types of gold mineralization (Carne, 2002). The first type and the one returning the highest gold grades to date, consist of limonitic, siliceous vein float within which tiny grains of arsenopyrite are sometimes still present after oxidation. Grey chalcedonic, somewhat banded and often druzy quartz in the veins, has been emplaced in at least two stages and is accompanied by brecciation and alteration of the host rock. Yellow-orange to red-brown limonite comprises from 10 to 50% of the vein material. Crosscutting relationships suggest that the veins may form a stockwork zone within the anomalous area. A grab sample of this material assayed 9.0 g/t gold. The second type of mineralization consists of gold bearing, sheared, leached and bleached clastic sedimentary rocks. At first glance these do not appear to differ greatly from the barren to weakly mineralized quartzite and conglomerates that are peripheral to the anomalous zone. On closer inspection, strong silicification and box

works after disseminated sulphides are evident. One such specimen assayed 3.7 g/t gold. Although this type of mineralization is generally lower grade than the vein-bearing rock, the silicified material is probably more representative of much of the material found between veins or shear zones within the anomalous area. The source area of this talus mineralization has not been directly tested by diamond drilling in 2005 and 2011, which was carried out at the base of slope.

The fault that cross-cuts the QLL trends northwesterly from the Cuz occurrence, through a narrow valley with poor bedrock exposure. Prospecting in this valley in 1982 discovered siderite float, a common alteration type in the Camp Zone (Joan Carne, pers. com. 2016).

Mineralization at Cuz is gold dominated with low silver values as compared to the silver dominated mineralization at the Main Zone deposit (Gray, 2015). In style and mineralogy Cuz Zone mineralization is most comparable to Type III mineralization at the Main Zone deposit with quartz +/- Fe-carbonate +/- pyrite +/- titanite. (Black, 2010 and Lustig et al., 2003). Type III mineralization is the latest stage of mineralization at the Main Zone and possibly represents a distal, upper or waning phase of the hydrothermal system.

Cuz Zone gold mineralization intersected by the 2011 drilling program, in conjunction with results of prospecting and soil sampling, outlines a potentially mineralized breccia up to 300 m wide over a possible 2 km strike length on a southeasterly trend. Gold mineralization sampled to date at the Cuz Zone is distinct from the Main Zone gold mineralization as there is a significantly lower silver component than the Main Zone. The Cuz Zone mineralization occurs along a regional scale fault that terminates or offsets the QLL and is in higher structural and stratigraphic setting than the Main Zone. It is the interpretation of Banyan staff that these secondary structures (and their intersections with the dominant north-south Quartz Lake Lineament) may offer important exploration targets for future work on other parts of the Property (Gray, 2015). Furthermore, the mineralogical and metallogenic characteristics of the Cuz Zone, coupled with its stratigraphic and structurally higher setting than the Main Zone, suggest that it may represent distal or high-level mineralization. It is possible then that significant gold mineralization may exist at deeper levels in the Cuz Zone where Main Zone stratigraphy may be present.

7.3.3.5 Unnamed Area of Mineralization

Soil sampling by Westmin in 1995 over an area located 1500 m east of the Cuz occurrence (Pawliuk 1996) partially delineated an area of anomalous arsenic in soils response. Accompanying gold values ranged up to 525 ppb. Prospecting follow up in 1999 discovered strongly limonitic float with abundant pits formed by weathered sulphides that returned 5.5 g/t gold, >1% arsenic, 1 295 ppm bismuth and 4050 ppm copper (Carne, 2002).

7.3.3.6 Montrose Ridge Zone Mineralization

Ridge and spur soil sampling was carried out in 2011 on Montrose Ridge, about 2 km south of the Cuz Zone, as a follow up of silt geochemical anomalies resulting from early exploration programs. Anomalous gold and arsenic in soils was followed up with more detailed geochemical sampling in 2013 and 2014. The 2014 program was successful in connecting the Cuz Zone soil coverage with the 2013 Montrose Ridge soils grid. The anomalous gold-arsenic in soils zone was enlarged by this program and a more defined underlying, possibly structural, trend determined in the process. These results indicate a broad 500vm by 1000 m easterly trending gold-in-soils anomaly (>20ppb Au) (Gray, 2014b).

Proceeding and co-incident with access road construction to Montrose Ridge in 2015, a systematic portable X-Ray Fluorescence (XRF) analysis soil sampling program was conducted on the Montrose Ridge gold/arsenic-insoils anomaly. This grid-based soil sampling program served to confirm XRF analyses effectiveness as well as to in-fill and extend the 2013-2014 Montrose Ridge anomaly. It was determined by this work that the XRF analyses of Montrose soil samples reported arsenic- in-soils results comparable to 2013/14 chemical analysis; and additionally that Bi was a highly applicable pathfinder element for the Montrose Ridge gold-in-soils anomaly.

Excavator trenching was carried out in 2015 over the soil geochemical and portable XRF anomalies. Trench 2015 assay highlights include 6 m of 4.4 g/t Au from 0 to 6m in Trench MT-15-01, including 2 m of 13.1 g/t Au from 4 to 6 m. Trench MT-15-01 also returned 24 m of 0.47 g/t Au from 18 to 42 m, including 6 m of 1.3 g/t Au from 36 to 42 m. Trench MT-15-01 was 42 m long, however only 30 m were sampled due to overburden conditions from 6m to 18m. Chip and channel samples from other nearby trenches returned anomalous, but less significant values of gold and arsenic.

The trench sample results at Montrose Ridge have low silver response (<1 g/t) similar to the Cuz Zone, 2.5 km to the north and strengthens the interpretation that both Cuz and Montrose represent a separate or higher level mineralized system than the Hyland Main Zone system, where an approximate 1:4 gold-silver ratio exits (Gray, 2015). This definition of vertically extensive, multi-phased gold mineralization events on the Hyland Gold Project further emphasizes the district-scale of the causative hydrothermal system.

7.3.3.7 Hyland South Zone

Several point sample Au anomalies located within the more southern ridge and spur lines as well as 2013 follow-up soils grids should be revisited and step out soil sampling conducted in conjunction with geological mapping programs. Interestingly, the southern grids have a low background As component in comparison to the CUZ and Montrose Ridge grids. This could be a function of primary mineralizing event and/or host rock (lithological) differences. More work (mapping and sampling) will be required to more adequately qualify this discrepancy and should concentrate on determining if a separate domain of As background should be utilized in all future exploration programs in these developing exploration zones.

7.3.3.8 Pyrite Creek Showing

Westmin geologists mapping and prospecting in 1995 along the canyon of Pyrite Creek, about 3 km west of the Hyland Gold Main Zone, noted that siliceous quartzites there can contain up to 1 to 2% disseminated pyrite with local arsenopyrite. A grab sample of siliceous quartzite with massive arsenopyrite and pyrite returned an assay of 2.23 g/t gold and greater than 1% arsenic (Turner and Pawliuk, 1996).

8.0 DEPOSIT TYPES

8.1 Overview of Hyland Gold Mineralization Styles

Gold mineralization has been discovered in several areas on the Hyland Gold Project. The Main Zone has received the most exploration and it is the best known example:

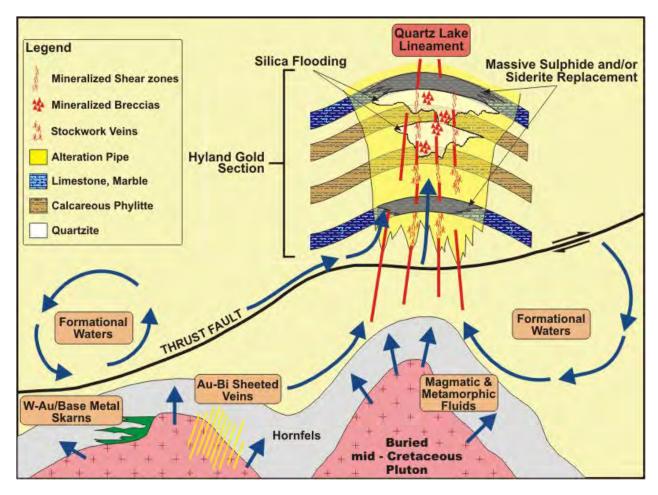
- It occurs within a slightly recumbent anticline developed along a regional structural corridor of faulting and folding known as the Quartz Lake Lineament (QLL), notably where it is cut by a cross cutting southeast trending fault. There is a strong coincidence with other less well explored gold mineralization and untested geochemical targets with the QLL or cross cutting faults;
- Gold occurs in quartz veins and breccias in quartzite, to a lesser degree in silicified (jasperoid altered) zones in phyllite intervals, and as a minor constituent of iron sulphide or iron carbonate replacement zones in limestone along the QLL;
- Native gold occurs as inclusions in pyrite and at pyrite/arsenopyrite grain boundaries;
- Primary mineralization in the Main Zone comprises pyrite, arsenopyrite and chalcopyrite, with minor sphalerite, tetrahedrite, pyrrhotite and bismuthinite;
- Accessory minerals include tourmaline and muscovite;
- Mineralization is both stratabound and structurally controlled;
- There is no direct evidence of an igneous association for mineralizing fluids although the pathfinder element suite of arsenic-bismuth-tungsten and the association of hydrothermal tourmaline suggests involvement of granitic fluids, at least in part; and
- Highly fractured zones of better grade gold mineralization can be oxidized to a much greater depth than relatively unfractured, but silicified, flanking zones of lower grade mineralization.

In other areas on the Project, gold occurs in manto-like siderite replacement bodies in limestone adjacent to the QLL, in massive sulphide bodies in fault zones that make up the QLL, in jamesonite veins cutting the siderite mantos, and as sulphide mineral disseminations in silicified and/or brecciated sedimentary rocks outside the QLL corridor. The association of mineralization with faulting is evident along the QLL, especially where it is intersected by cross faults.

The stratigraphy along the QLL generally plunges to the south for a nine kilometer distance that rises in elevation from the Camp Zone, through the Main Zone, the Cuz Zone and finally to the Montrose Ridge Zone. Changes in gold deposit style range from manto and chimney sulphide-rich bodies at the Camp Zone, to silica-flooded, relatively silver-rich breccia zones in the Main Zone and finally, distal style mineralization with low silver-gold ratios at higher elevations and higher stratigraphic levels in the Cuz and Montrose Ridge Zones. These variations in deposit style may be a result of regional lateral zonation, relative exhumation level of the causative hydrothermal system, or chemical/physical variation in host stratigraphy; or some combination of all these factors.

The McMillan lead-zinc-sliver manto mineralization west of the Project area also occurs along the same southeasterly tending fault that focuses mineralization at the Cuz occurrence and offsets the QLL.

A conceptual model of Hyland Gold mineralization is shown below in Figure 8.1.


8.2 Sediment-hosted Gold Occurrences Elsewhere in Selwyn Basin

Sediment hosted gold mineralization with indirect or no direct magmatic association occurs elsewhere in Selwyn Basin at the ATAC Resources Ltd. Rackla Gold Project in the recently discovered Rau and Nadaleen Trends.

The Tiger deposit is the best known of twenty or more gold occurrences in the Rau Trend of central Yukon. The deposit has a 43-101 compliant Measured and Indicated resource of 5,680,000 tonnes containing 485,700 ounces of gold at a grade of 2.66 g/t and 649,900 ounces of silver at a grade of 3.56 g/t, and an Inferred

Resource of 3,230,000 tonnes containing 188,500 ounces of gold at a grade of 1.81 g/t and 95,600 ounces of silver at a grade of 0.92 g/t (Kappes et al, 2014). Mineralization consists of sediment-hosted carbonate replacement mineralization developed within a Silurian to Devonian shallow water limestone unit adjacent to a major regional-scale, crustal fault that may have been active as far back as the Paleozoic (Kappes, et al, 2014).

Figure 8.1: Hyland Gold Conceptual Model for Mineralization

Auriferous sulphide mineralization at Tiger is developed in a shallow water lagoon facies limestone that is replaced by ferruginous dolomite and iron carbonate minerals adjacent to the regional scale northwest trending fault. Mineralization occurs in two distinct assemblages: (1) hydrothermal ferruginous dolomite with gold-bearing arsenopyrite and minor pyrite, and (2) fractures hosting native gold associated with bismuth, antimony, silver, tungsten and minor base metals (Thiessen et al, 2016). Best grades of mineralization and deepest oxidation occurs in an area cross cutting north trending faults. Gold mineralization has been bracketed by isotopic dating to be contemporaneous with intrusion of a nearby granite intrusion dated at 62.3 Ma. Magmatic fluids migrating along fault corridors from the 3 km distant pluton were responsible for relatively high temperature (~350°C) gold mineralization deposited along selective permeable limestone horizons (Theissen et al, 2016).

The Nadaleen Trend recent gold discoveries are located 100 km east of the Tiger Deposit. They are considered to be true Carlin-type mineralization (Arehart et al, 2013). Carlin-type gold occurrences are abundant in north-

central Nevada but uncommon elsewhere. They are characterized by micron-scale gold contained within disseminated arsenian pyrite. Deposits are typically found as replacement zones in silty carbonate and have both structural and stratigraphic controls with strong relationships to deep seated crustal structures (Tucker, at al, 2013). Folds and faults are important controls on mineralization, with best developed examples occurring in anticline core areas along regional scale faults. Nadaleen Trend gold mineralization occurs within many lithologies but is best developed within silty limestone sequences where alteration is characterized by decalcification, silicification and occasional solution collapse breccias that are accompanied by peripheral secondary calcite flooding. Mineralization within non-calcareous rocks is typically associated with fault breccias and/or intense fracture development. Significant late-stage realgar, orpiment, fluorite, arsenian pyrite and trace stibnite are found as associated open space fillings (Lane et al, 2015). The Conrad Deposit in the Nadaleen Trend has an age of mineralization bracketed by isotopic data of between 74 and 43 Ma (Tucker, 2015).

Carlin type occurrences are conventionally thought to be generated by relatively low salinity, possibly distal magmatic fluids with temperatures estimated at 175°C to 250°C. The Nadaleen Trend deposits are estimated, on limited data, to have formed from fluids with temperatures around 200°C (Arehart et al, 2013).

8.3 Distal-disseminated Sediment-hosted Gold Deposits at the Marigold Mine, Nevada

The best analogy for gold mineralization at the Hyland Gold Project may be another type of sediment-hosted gold mineralization that also occurs in north-central Nevada. The Main Zone has many characteristics of the gold deposits that form the Marigold Mine, located at the north end of the Battle Mountain-Eureka Trend in north-central Nevada, as documented by Carver et al (2014).

Three packages of passive continental margin Paleozoic sedimentary rocks are present at Marigold. In ascending order, these are: the Ordovician Valmy Fm; the Pennsylvanian to Permian-aged Antler Sequence; and the overlying Havallah Sequence. All of these stratigraphic packages host gold mineralization on the Marigold Mine property.

The Valmy Fm consists of relatively deep water deposits of a lower interbedded quartzite and argillite sequence; an intermediate package composed of meta-basalt, chert, and argillite; and an upper package of quartzite and argillite very similar to the lower unit. The top of the Valmy Fm marks a major regional depositional angular unconformity with the overlying Antler Sequence. The Antler Sequence is composed of a sequence of continental shelf sedimentary rock including conglomerate, sandstone, limestone, chert and barite that were deposited in marine basins and troughs adjacent to the paleo-highland of Valmy Fm. The contact with the overlying Havallah sequence is the Golconda thrust fault. The Havallah assemblage is dominated by siltstone, meta-volcanic, chert, sandstone and carbonate rocks.

Gold mineralization at Marigold has been mined in a number of deposits located over a three by ten km area. The main structural corridor and controlling feature for the gold deposits is a 1.6 km wide, 8 km long uplifted block of predominantly Valmy Fm rocks that is cut and bordered by north-south trending steep normal faults. In this structural domain Valmy Fm rocks are highly deformed, with imbricate low angle thrust faults, bedding slip and associated overturned tight folds. Argillite beds within the sequences deformed plastically while the intercalated quartzite horizons shattered, creating open fracture spaces for deposition of gold-bearing sulphide mineralization.

Gold mineralization is spatially related to favorable stratigraphic horizons with the Valmy host rocks as well as within fault zones. The series of north-south trending, bounding fault structures are interpreted to have been important fluid conduits for the supply of ascending mineralizing fluids into zones of favorable stratigraphy along the length of the mineralized area. The intersections of the north-south trending bounding faults with second order north-west and north-east trending faults are also a key structural control for gold deposition at Marigold. In un-oxidized rocks, gold occurs in quartz veinlets within arsenic enriched overgrowths on pyrite (Carver et al, 2014).

The deposits at the Marigold Mine are classified as distal-type sediment-hosted gold deposits by Carver et al, (2014) and as distal-disseminated sediment-hosted gold deposits by Johnston and Ressel (2004). These gold occurrences are replacement bodies without typical epithermal-style veins or epithermal open-space features. Gold and ore-stage sulfides are typically disseminated in altered or silicified sedimentary host rocks. There is no direct relationship between mineralization and a related major pluton, although there commonly are associated distal-type dikes and/or sills -leading to speculation that there is a major pluton(s) at depth below such gold districts.

Distal-disseminated sediment-hosted gold deposits in north-central Nevada are identified by characteristic hydrothermal alteration assemblages consisting of jasperoidal silicification, argillization, and decalcification of carbonate-bearing lithologies. Controls on mineral deposition that are useful for exploration include a common association with fold hinges. Occurrences are aligned along favorable faults or fault corridors that were active during mineralization. There is an association with narrow dikes, and a strong lithological control which can result in manto-like shapes to mineralized bodies in receptive host rocks. Gold in these deposits is hosted by numerous lithologies, the common feature being some type of pre-mineral permeability, whether primary or secondary.

Johnston and Ressel (2004) propose a continuum between distal-disseminated gold deposits and Carlin-type gold deposits in the Great Basin of Nevada with most or all deposits occurring as peripheral, relatively shallow components of large, complex, magmatic hydrothermal systems.

In Selwyn Basin, as in north-central Nevada, there may be an indirect link between different varieties of sediment-hosted gold occurrences, assuming that variation in characteristics between Carlin-type, carbonate replacement and distal-disseminated may largely be a result of relative distance from magmatic heat and fluid sources, and differing host lithologies.

While the similarities of Hyland Gold Main Zone mineralization to distal-disseminated sediment-hosted gold deposits of the western United States was recognized relatively early in the exploration history of the Project (Carne, 1984), little research has been carried out to refine the Hyland Gold deposit model as an exploration targeting tool. An integrated MSc. level compilation of all available exploration data on the property with application to the deposit model is an appropriate next step. The first author (Carne) has managed and participated in exploration programs on the Rau Trend between 2008 and 2015 and the Nadaleen Trend between 2009 and 2015 and participated in a university graduate level field trip to the Marigold Mine in 2015. Discovery and delineation of gold mineralization at all three projects has been a result of persistent exploration programs carried out over many years in concert with applied research.

9.0 EXPLORATION

9.1 Geological Mapping

The Hyland Gold Project area spans a variety of terrain, from low-lying areas with little bedrock exposure to ridge tops above tree line. The main historical areas of exploration interest lie below tree line and, aside from mechanically disturbed areas; there is little natural exposure of the mineralization in the Main Zone area. The first detailed mapping on the project was done by in 1984 (Carne, 1985) before bulldozer trenching and drilling campaigns were carried out. Although this work provided a framework for the structural and stratigraphic setting of gold mineralization, the poor level of natural bedrock exposure prohibited a definitive understanding of the property geology. Since then, there has been significant exposure of bedrock by mechanized trenching and detailed mapping has accompanied sampling of the trenches. Various geochemical sampling programs by a variety of operators over different parts of the Project area have also been accompanied by localized geological mapping at various scales. However, a rigorous integration of this geological data with results of geochemical and geophysical survey programs compiled with fragmented geological mapping has never been carried out to produce a property-scale geology map with a level of detail necessary to guide the next levels of investigation. Figure 7.2 is a compilation of property geology taken from relatively recent regional scale geological mapping by the Yukon Geological Survey (Pigage et al, 2011).

9.2 Geochemical Sampling

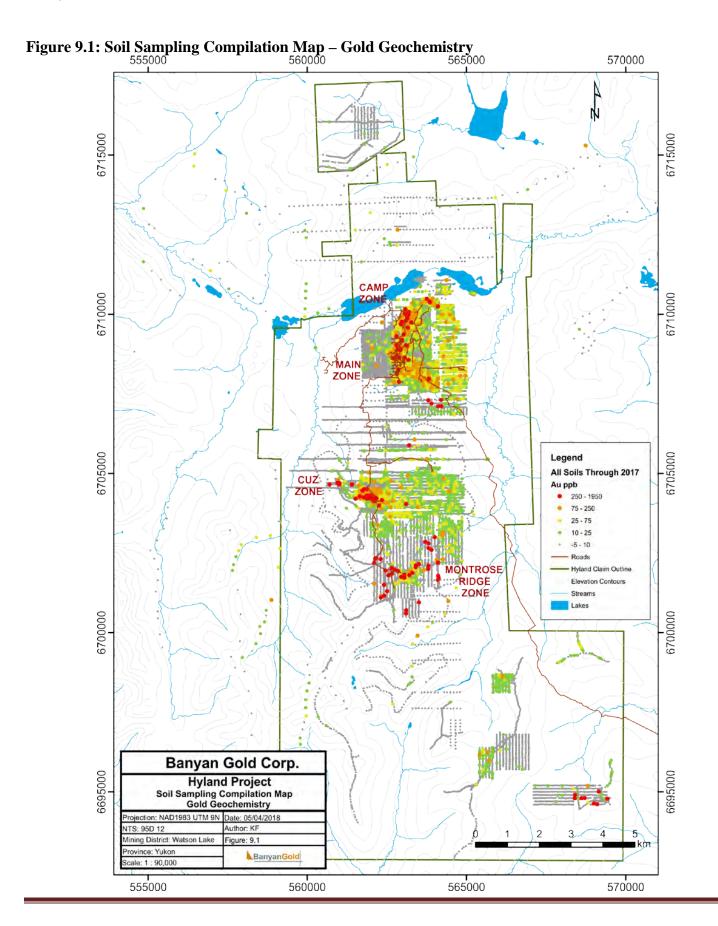
9.2.1 Introduction

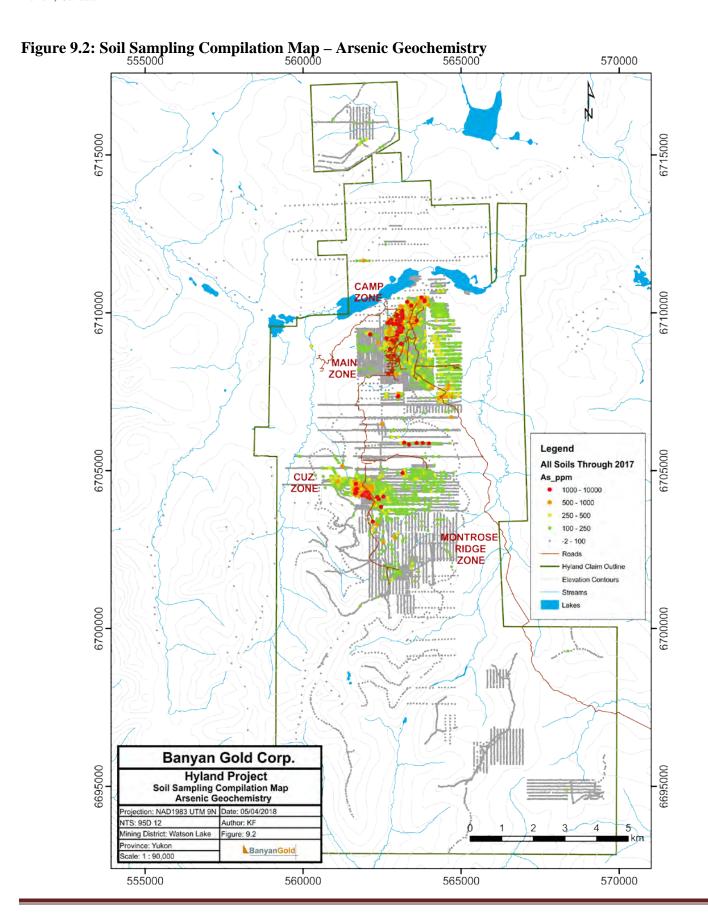
The Hyland Main Zone area has been covered by numerous soil and stream geochemical surveys conducted from 1973 to 2015. Data is compiled from the 1984 to 2015 sampling programs in the core Project area as well as other data resulting from surveys carried out by Westmin Resources Ltd. in 1994 and 1995 over the rest of the property and it is presented as thematic maps for gold and arsenic in soil and silt samples in Figures 9.1 to 9.4. All detailed soil sampling of the Main Zone was performed before there were any surface disturbances from road building, trenching or drilling so that there is little likelihood of contamination or dispersion by mechanical means. A brief history of the different surveys over the Main Zone, adapted in part from Armitage and Gray (2012b), follows below.

The entire area of the original Hyland Gold core claims was sampled prior to 1986 by several generations of wide-spaced soil geochemical surveys. Sample preparation, analytical methods and sample security for the various programs are discussed in Section 11 of this report. Soil samples collected in 1973-1975 were collected at wide-spaced grid intervals (60 by 245 m or 200 by 800 feet) and from regional-scale soil and stream sediment traverses across the entire property. Soil sampling on the Quiver claims was carried out in 1982 at 30 m intervals along and in between old partially overgrown 800 foot spaced cut lines. Soil samples were collected on the Piglet claims in 1984 at 50 m intervals along and in between the old cut lines. Detailed soil sampling carried out in 1986 covered a 3.3 km² area. Two thousand one hundred soil samples were collected at 30 m intervals on 60 m line spacing. Soil sampling in the south part of the property in 2013 and 2014 consisted of ridge and spur traverses that were followed up with small grid sampling programs in 2014 and 2015.

Geochemical background, threshold and maximum values for important chemical elements in the Hyland mineralizing system are tabulated below (Table 9-1). Note that geochemical patterns and associations between bismuth, antimony, silver, lead, zinc, and manganese rely on observations made from historical data in map and report form that are not included in this document.

Table 9-1
Background and Threshold Values for Important Elements


Element	Background	Threshold	Maximum
Gold	5 ppb	25 ppb	1950 ppb
Arsenic	50 ppm	200 ppm	>1%
Bismuth	<2 ppm	4 ppm	546 ppm
Copper	15 ppm	50 ppm	309 ppm
Lead	35 ppm	50 ppm	380 ppm
Zinc	50 ppm	100 ppm	600 ppm
Barium	150 ppm	300 ppm	1160 ppm
Antimony	<10 ppm	10 ppm	310 ppm
Manganese	200 ppm	600 ppm	>1%


9.2.2 Main Zone - Camp Zone Anomaly

Results of geochemical surveys carried out in previous years on the Hyland Gold property have defined a 2 km long, northerly-trending zone of strongly anomalous gold values, with coincident highly anomalous arsenic and bismuth soil geochemical response. The Main Zone occurs at the south end of this area, while the northern extension underlies the Camp Zone (Figures 9.1 and 9.2). A 1.2 km long south east extension of the soil geochemical anomaly (Southeast Anomaly) with similar gold values but only weakly to moderately anomalous arsenic values has only been lightly explored with a few bulldozer trenches that did not reach bedrock for the much of their length. A broad zone northerly trending area of moderately anomalous gold and weakly anomalous arsenic values (East Anomaly) lies about 1 km east of the Main Zone. This area has received little historical follow up to the soil sampling program originally conducted in 1982.

In the Main Zone Anomaly, gold values in soils range from a threshold value of 25 to a maximum of 1,950 ppb. Arsenic values exceed 1% from a threshold of 200 ppm and bismuth values range up to 546 ppm with a threshold value of 4 ppm. The anomalous area extends northerly along the Camp Zone beyond the known extent of Main Zone gold mineralization, where it is eventually terminated to the north by an area of deep glaciofluvial overburden. Bismuth anomalies closely follow gold anomalies with the strongest and most continuous values occurring along the QLL. Arsenic response follows the same trends as gold and bismuth, although the anomalies tend to be more widespread.

Antimony values are generally less than the 10 ppm lower detection limit of the ICP analytical technique used. Anomalous values (>10 ppm) cluster in isolated patches along the length of the Main Zone Anomaly with peak values to 310 ppm antimony. Silver response is weak and erratic with only localized anomalies present with individual values reaching 32.4 ppm. Lead, zinc and manganese show a good inter-correlation with anomalous values clustering west of, and peripheral to, the elongate gold-bismuth-arsenic-antimony-silver Main Zone Anomaly. This pattern in the soil geochemistry is possible evidence for metal zoning from a precious metal core to base metal periphery.

9.2.3 Southeast Anomaly

The Southeast Anomaly was not completely delineated by the 1986 grid sampling program. Gold and bismuth outline a 1.2 km long, 300 m wide southeast trending anomalous zone that is not associated with any obvious topographic feature but closely matches a northwest-southeast feature evident in the Newmont airborne magnetics survey. Arsenic values in soils from the Southeast Anomaly are not as strong as those from the northern part of the anomalous trend. Peak values in soils exceed 100 ppb gold, 250 ppm arsenic and 10 ppm bismuth.

Antimony values are generally less than the 10 ppm lower analytical limit of the ICP analytical technique used. Scattered clusters of soil samples containing 10 ppm antimony are associated with the broader gold-bismuth anomaly although no strongly anomalous values were detected. Silver response is generally low with large areas of weakly anomalous values to 20 ppm. Lead, zinc and manganese response varies from threshold to moderately anomalous values. Unlike the Main Zone anomaly, however, the distribution of lead, zinc and manganese anomalies generally follows that of the gold-bismuth-arsenic suite.

9.2.4 East Anomaly

The East Anomaly was not re-sampled during the 1986 survey so sample density is lower in this area and consequently the data was not contoured. Broad, discontinuous areas of moderate gold, arsenic, lead, zinc and manganese response resulting from the 1982 sampling program are not related to any known geological feature. Broad areas exceed the 25 ppb gold threshold with several spot values above 100 ppb Au.

9.2.5 Cuz Anomaly

The main expression of the Cuz Zone mineralization is a gold and arsenic soil geochemical anomaly, originally 300m by 700m in area that has since been extended over two kilometres to the southeast along the strike of the southeasterly trending fault. The core of the Cuz Anomaly is a roughly circular, 275 m diameter area of very anomalous gold-in-soils response with most samples exceeding 100 ppb, to a maximum of 1940 ppb. Arsenic results from soils in the core area range up to 4600 ppm and, similar to the Main Zone area, they outline an anomalous area considerably larger than the area of high gold-in-soils (Carne, 2002).

9.2.6 Montrose Ridge Anomaly

In 2011 Argus Metals conducted of ridge and spur soil geochemical sampling programs totaling 1,754 soil sample with a complementary watershed silt sediment sampling program totaling 129 samples on recently staked claims extending the Hyland Gold Project to the south (Gray 2014b). These claims were staked to target untested regional stream sediment geochemical anomalies determined from an analysis of government RGS and project proprietary silt sample data (Arne, 2011). Follow up of the 2011 recce scale gold and arsenic geochemical anomalies was the main focus of Banyan's 2013 and 2014 exploration efforts.

Banyan's 2013 geochemical exploration program consisted of four detailed soil grids, following up on ridge and spur anomalies and two ridge and spur soil sampling traverses designed to follow up on geochemically anomalous silt samples. Each of these grids and ridge and spur traverses was successful in delineating and expanding earlier gold-in-soil geochemical anomalies and has in particular, resulted in the discovery of an open sided, coincident gold and arsenic-in-soils anomaly designated as the Montrose Ridge Zone (Gray, 2014b). This newly identified area is located ~6.5 km south of the Main Zone and extends south from the Cuz Zone, with the most anomalous soils geochemical response located about 2 km south of the Cuz Zone.

The 2014 Program (Gray 2014b) was successful in filling the unexplored areas between the Montrose Ridge and Cuz grids and moreover, extending and further defining the 2013 anomalous gold and arsenic-in-soils anomalies. In total, Banyan collected and shipped 491 samples (452 soils and 39 rocks) from the soil grid program. All samples were sent for subsequent analyses to AGAT Labs in Whitehorse, YT where they were prepped and subsequently analyzed for 50 element ICP assay with a 30g Fire Assay finish. The geochemical sampling program targeted the Montrose Ridge and Cuz South geochemical anomalies generated from 2014 soil sampling and returned anomalous gold-in-soils results as summarized below:

- Gold levels in soils ranged from trace to 120 ppb Au with a mean of 7 ppb,
- Arsenic levels in soils ranged from trace to 561 ppm As with a mean of 54 ppm, and
- Silver levels in soils ranged from trace to 300 ppb Ag with a mean of 103 ppb.

In 2015, a portable X-Ray Fluorescence (XRF) analysis based grid soil geochemical sampling program was conducted over the Montrose Ridge gold and arsenic-in-soils anomaly. This was done to confirm XRF analyses effectiveness as well as in-fill and extend the existing Montrose Ridge anomaly. The XRF analyses of the Montrose soil samples were comparable to the 2013 and 2014 arsenic-in-soils laboratory results. In addition, it was found that bismuth was a highly applicable pathfinder element for the Montrose Ridge gold-in-soils anomaly (Gray 2015).

In total, 301 soil samples were collected from the Montrose Ridge Zone during the 2015 exploration program. All soil samples locations were determined by GPS and analyzed by XRF daily, with final results used to finalize the location of the 2015 excavator trenches. The XRF soils analytical work produced a strong 1.4 km long bismuth and arsenic-in-soils anomaly centered on the previously identified gold and arsenic-in-soils anomaly at Montrose Ridge. The Bi XRF results ranged from trace to 2,818 ppm bismuth with an average of 59.3 ppm. Arsenic XRF results ranged from trace to 4,308 ppm with an average of 405 ppm. The bismuth and arsenic-in-soils anomaly forms a broadly east trending zone with a possible 110° main strike, interpreted to represent a possible secondary mineralized structure akin to the control of gold mineralization previously identified by drilling in the Cuz Zone to the north (Gray, 2015).

Additionally, several generations of Project-wide stream sediment sampling have been conducted on the Hyland Gold property. Figures 9.3 and 9.4 summarize the stream sediment sampling data results for gold and arsenic, respectively.

9.2.7 Discussion of Geochemical Survey Results

Effective soil sampling in the Main Zone area is hampered by pockets of deep glacial overburden in north-south trending gullies immediately east of the Main Zone Anomaly and a thick glaciofluvial terrace that flanks the sides of the Quartz Lake valley. To test for extensions of the Main Zone Anomaly to the north, south and east would require mechanized auger sampling to penetrate this cover. Similarly, increasing overburden depth on the East Anomaly may, in part, be responsible for the decreased magnitude of the geochemical signature and power auger sampling could be an effective tool to test this.

The location of the Main Zone Anomaly closely follows the main axis of the anticline along the QLL (Figure 7.2) and is closely associated with the Lower Phyllite unit exposed in the core of this structure. Outcrop in the

Figure 9.3: Stream Sediment Sample Compilation Map – Gold Geochemistry

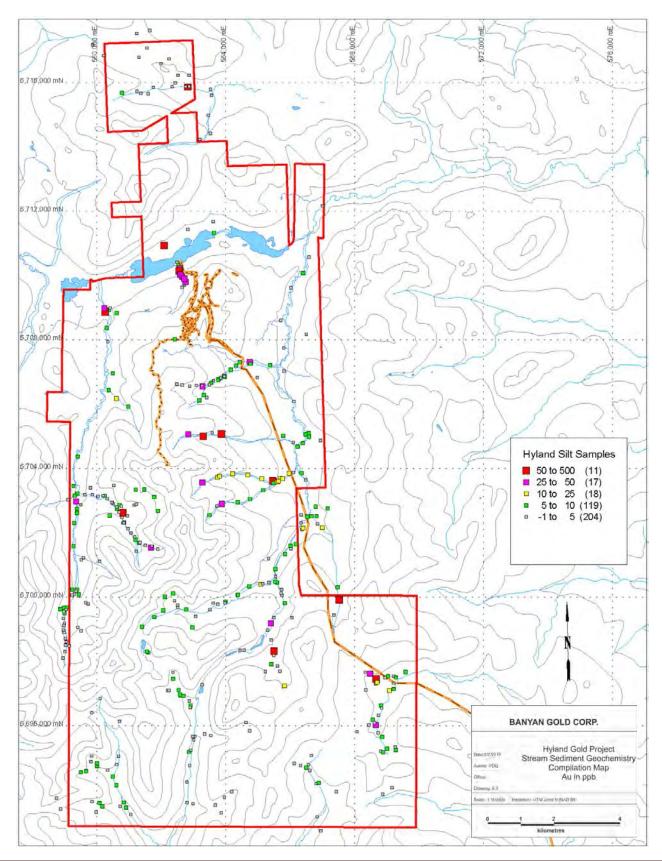
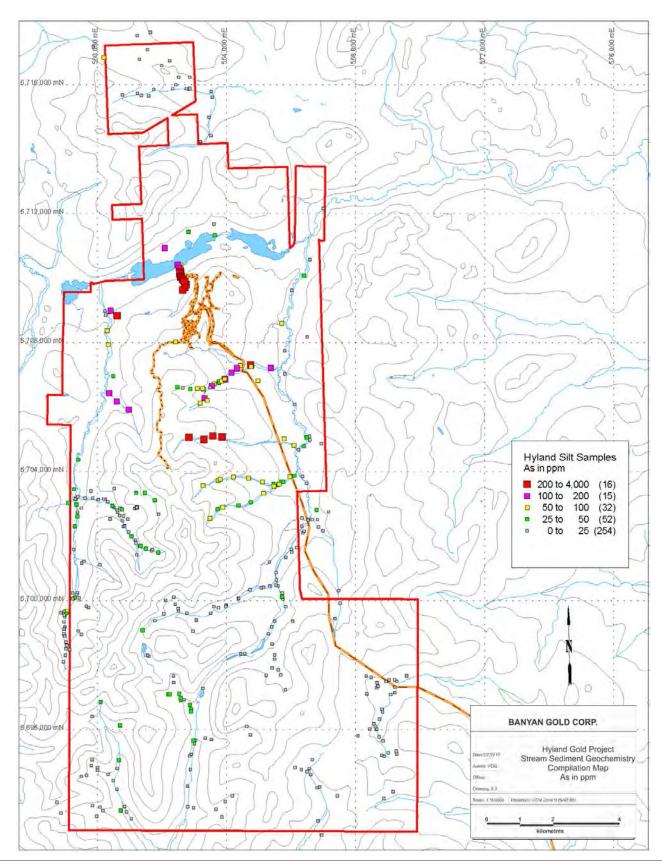



Figure 9.4: Stream Sediment Sample Compilation Map – Arsenic Geochemistry

East Anomaly area is very sparse, and it is possible that the anomaly signature is lower in this area due to weaker mineralization because of less favourable underlying host rocks.

Similarly, testing the southern extension of the Main Zone and Southeast Anomalies may be complicated by changes in underlying stratigraphy. Mapping suggests that as topography ascends to the south, Upper Limestone units are exposed. It is thought that these relatively reactive and ductile units form barriers to upward hydrothermal fluid migration in the Hyland hydrothermal system. However, significant gold mineralization could be expected in phyllites or quartzites beneath the Upper Limestone, especially where weak soil geochemical anomalies suggest the presence of "leakage" mineralization developed in the limestone along through going faults.

9.3 Geophysical Surveys

Descriptions of the historical geophysical surveys conducted over the Hyland Gold Project area and an interpretation of that data were prepared by Klein (2004) and the section following was adapted from the Armitage and Gray (2012b) review of that work (Figure 9.5).

Ground geophysical surveys were conducted in 1988 over a 2,500 x 2,900 m area in the northern part of the property along E-W oriented lines approximately 125m apart. Induced Polarization/Resistivity (IP/Res), Magnetic (GMag) and VLF-EM data were collected. Not all lines were surveyed with IP/Res. That part of the ground survey covers only the northern part of the Main Zone and the area further to the north. All data is available in profile and contour form. No actual data points are shown on the original maps and station intervals are therefore not known.

A 542 line kilometer Dighem-V airborne electromagnetic survey was carried out in June 1994. Lines were flown in an E-W direction at 200m intervals. The survey covers an area of 7 x 14 km and is centered just north of the Cuz Zone. The full Dighem report, maps and digital data are available including the Calculated Resistivity for the 7200Hz coplanar coil set.

An airborne magnetic and radiometric survey was flown with the Newmont airborne system in June 1995. An area of ~1,800 square kilometers was covered with E-W oriented lines at 250m interval. The aircraft, including the 1,024 cubic inch spectrometer, was optimally flown at 90m above ground level. The magnetometer was towed 30m below the aircraft. The data is available in map and digital format with a report by the Newmont staff.

The IP/Res survey used a single separation Schlumberger array (transmitter dipole AB=240m, receiver dipole MN=40m). The VLF-EM employed the Seattle station transmitting at 24.8 kHz. The direction towards that station means that ~N-S oriented conductors and resistivity contrasts are emphasized over those oriented ~E-W.

The data available is of good quality. The IP contours were digitized in 2003 using the NAD83 base and then converted to NAD27. The main anomalous axes of the other ground data sets were traced on to the NAD27 base map. There will be some discrepancies in this process so care was to be taken when cross correlating different data sets in detail or when deciding on the actual location of anomalies.

The Aeromagnetic ("AMag") results show a large (~2,000 x 1,500m) smooth magnetic low (<56,800nT) roughly centered near the Main Zone (Figure 9.6). This type of broad, smooth magnetic low can be caused by a

deep-zoned intrusive or by pervasive alteration over a large area that has destroyed primary magnetic minerals. The latter is the more likely source of this magnetic low. Directly north of the Main Zone short-waved

Figure 9.5: Geophysical Survey Compilation Map

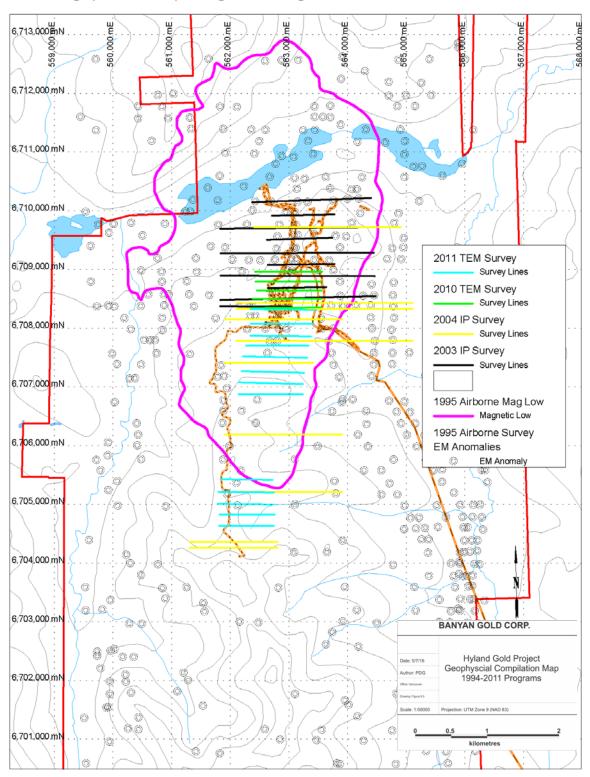
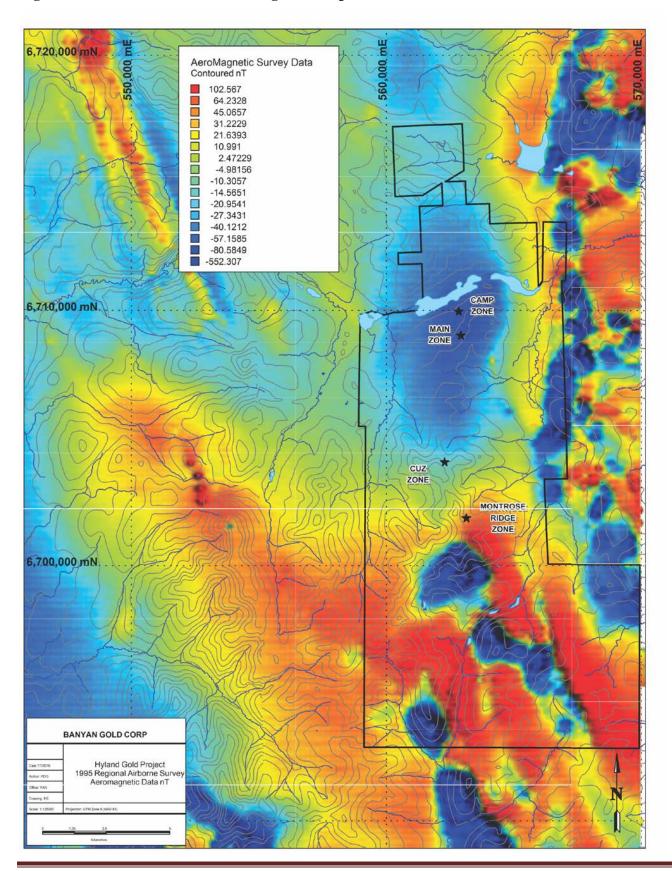



Figure 9.6: Total Field Airborne Magnetic Map

(=shallow sourced) N-S trending AMag and GMag highs and lows are visible. They are superimposed on the broad low. They most likely reflect local pockets of pyrrhotite (but magnetite cannot be excluded) deposited along faults by mineralizing fluids. Pyrrhotite was detected in drill holes along the Camp Zone supporting this interpretation. These shallow magnetic features are not seen over the Main Zone, although that may be a result of deeper levels of oxidation there.

The ground geophysical results can be divided in to two parts. Only the northern portion of the Main Zone is covered with IP/Res surveys. The IP data over the Main Zone shows surprisingly low values of less than 20 msec. This value means that chargeable material (sulphide minerals, graphite etc.) is present in low quantity (~1%). The general background for the whole grid is ~25 msec. Resistivity values are also non-anomalous in the 500 – 1500 ohm range. There are no VLF-EM or AEM conductors mapped over the Main Zone. The resistivity values calculated from the 7200Hz AEM data over the Main Zone are in the 400 – 500 ohmm range. The GRes and ARes values show different ranges as they are calculated differently. They have to be compared within their individual data sets. It is concluded that the Main Zone does not show an obvious anomalous geophysical signature, although again that may be due to deeper levels of sulphide mineral oxidation there.

The area directly to the north of the Main Zone shows a completely different geophysical character. Narrow somewhat en-echelon IP highs with amplitudes of >50 msec coincide or are en-echelon with VLF-EM conductors and short-waved magnetic responses. This zone contains also the best AEM conductor from the Dighem survey. The Ternary Radiometric map shows also a weak change compared with the areas immediately to the west and east. Holes DDH HY-03-04 to 07 were drilled in this area. These holes intersected higher concentrations of sulphide minerals than the holes in the Main Zone. These are most likely semi-massive to massive (py + po) zones of replacement and may explain the location of the conductors along anastomosing fault strands in the QLL.

The axis of the geophysical anomalies north of the Main Zone are oriented ~N5°W. These axes do not project though the Main Zone. It is therefore possible or most likely that the Main Zone and the area to the north represent two separate mineralizing events possibly originating from the same deep source. The two zones appear slightly offset along an ~NW – SE structure roughly coinciding with the 500 ohmm GRes contour visible directly north of DDH HY-03-03. The large area of GRes low (<500 ohmm) extends to the west of the North Zone and correlates with a large portion of the center of the large AMag low. It is important to note that the trend of the geophysical anomalies cuts obliquely across the geology as seen on detailed maps.

The ARes map shows a low (<100 ohm) correlating with the large GRes low directly west of the anomalous area north of the Main Zone. The Main Zone, as mentioned, displays elevated ARes values. A structural zone that is outlined by a contrast in resistivity values along its east side can be followed southward to ~6,706,000N and possibly along the east side of the Cuz Zone and further south. The Cuz Zone does not show any conductive responses in the AEM data, rather it displays high ARes values of ~6,000ohmm.

An area in the southeast part of the IP/Res grid (~6,708,500N, ~564,000E) shows elevated values up to 50 msec; it is open to the south. A VLF-EM conductor projects in to it together with a weak N-S trending AEM conductor. The northern tip of a strong linear Mag high coincides with the SE-most peak of the high IP zone. Main Quartzite unit, a brittle lithology that shows open fractures and dilatant zones, underlies it. The IP values further to the north over the same unit are not as high. Gold geochemical values over it are 25 ppb or less but directly to the south, where there is no IP/Res coverage, numerous high Au values are recorded. This area is of interest because is possible that the IP high reflects hydrothermal sulphides and Au further to the south rather than graphite or primary sulphides.

In October 2010 Frontier Geosciences carried out a Transient Electromagnetic (TEM) survey. The purpose of the survey was to evaluate potential for massive to semi-massive sulphide mineralization at depth beneath and to the north of the Main Zone. The survey consisted of a single ~1,000 m by 500 m loop surveyed from five 1km long traverses with readings taken every 25m. Results of the survey indicate that there are no shallow conductors beneath the Main Zone, possibly reflecting the depth of oxidation and/or lack of interconnectivity of sulphide minerals. The geophysical survey indicates that a steep dipping conductive plate strikes ~009° and is buried 150 m below the surface. The data set was not conducive to modeling the thickness or conductivity.

In July 2011 Abitibi Geophysics carried out a Time Domain Electromagnetic (TDEM) survey. The purpose of the survey was to evaluate potential for massive to semi-massive sulphide mineralization at depth beneath and to the south of the Main Zone. The survey consisted of a ~1,800 m by 1,600 m loop surveyed from eight 1.5 km long traverses with readings taken every 25 and 50m. An "In-Loop" survey of four 1 km long traverses had readings taken every with 25 m and 50 m. TDEM anomalies were detected over the survey grid at the south end of the Main Zone. These anomalies are considered as moderate conductors with response typical of disseminated sulphide type mineralization. Two anomalies are identified at the southern end of the TDEM survey and remain open to expansion further south. An IP survey to help detect sulphide mineralization associated with gold was recommended (Dubois, 2011).

9.4 Mechanized Trenching

Bulldozer trenching on the property was carried out over the Main Zone in 1988 by E. Caron Diamond Drilling Ltd. of Whitehorse with a ripper-equipped Caterpillar D7E bulldozer. A total of 2,760 lineal metres of bedrock was exposed in 16 trenches, and 1,515 m³ of overburden was stripped from trenches that did not reach bedrock. Bulldozer trenches were cut across the Main Zone geochemical anomaly at approximately 100 m intervals over a 2,000 m strike length and across a few of the secondary anomalies.

Parts of trenches that reached bedrock were continuously chip sampled along their floor or lower ribs. Samples were taken over 5 to 10 m intervals from all potentially mineralized exposures, except in particularly complex areas where the intervals were shortened as required. Four hundred and thirty, 5 to 10 kg samples were collected and sent to Chemex Labs Ltd. (now ALS Laboratory Group) where they were dried, crushed, ring pulverized, screened to -140 mesh and homogenized before a one assay ton split was taken and fire assayed for gold using a gravimetric finish. In addition to the rocks, 170 soil samples were collected along the bottom of trenches that did not reach bedrock in order to compare the geochemical response deep in the soil profile to that at surface. They were also sent to Chemex and analyzed for gold by the same geochemical technique outlined above for the 1986 soil geochemical surveys.

Trench locations within the Main Zone are illustrated in Figure 5.1 and significant results reported in Table 9-2. It is important to note that even within the Main Zone, many of the trenches did not reach bedrock along their entire lengths. Trenches cut through the Main Zone outlined a mineralized fault breccia complex approximately 1,000 m long by 200 m wide. The best trench exposure chip samples averaged 4.87 g/t gold over 30 m including 6.55 g/t over 20 m from trench P-36 near the centre of the complex. This particular interval coincides with a north-trending fault and consists of moderately graphitic gouge. Farther west in the same trench, seventeen chip samples taken over an 88 m width returned a weighted average of 0.81 g/t Au from an area cut by three large faults. To the east where overburden tended to be deeper, three chip samples averaged 1.84 g/t Au over 16 m.

True thickness of the mineralized intervals is difficult to determine as the sampling is across the core of an interpreted antiform and true thickness could vary from sample to sample.

Table 9-2

Hyland Gold Project Selected Main Zone Trenching Results

			Gold
Trench	Interval (m)	Width (m)	(g/t)
87-05	40.0 -45.0	5.00	22.00
87-06	430.0 - 435.0	5.00	2.20
	475.0 -480.0	5.00	2.50
87-09	26.0-31.0	5.00	2.90
87-11	126.5- 142.0	15.50	2.30
includes	133.8-139.9	6.10	4.10
and	133.8-134.8	1.00	12.70
87-12	79.5-88.2	8.70	1.90
includes	79.5 - 84.0	4.50	2.80
	228.1 -231.3	3.20	1.70
87-13	150.0 -160.0	10.00	3.00
includes	155.0-160.0	5.00	4.00
87-13X	248.0 - 252.0	4.00	4.00
includes	248.0 -250.0	2.00	7.10
	253.0-264.0	11.00	2.10
includes	260.5 - 264.0	3.50	3.70
88-23	35.0 - 75.0	40.00	2.10
includes	35.0-40.0	5.00	3.40
and	45.0 - 50.0	5.00	3.50
	80.0 - 85.0	5.00	2.30
	125.0 - 130.0	5.00	2.40
	132.7 - 145.0	12.30	2.40
	155.0 - 165.0	10.00	2.00
88-25	95.0- 112.7	17.70	2.80
includes	109.0-112.7	3.70	3.80
	118.0-123.0	5.00	2.10
	107.5~120.0*	12.50	1.90
includes	107.5~112.0*	4.50	3.10
88-29	111.0-121.0	10.00	2.20
88-36	133.0- 149.0	16.00	1.80
	195.0 - 225.0	30.00	4.90
includes	205.0 - 225.0	20.00	6.60
and	215.0 -220.0	5.00	7.70
88-37	284.5 - 287.5	3.00	3.10
TR17-02	14.0 - 70.0	56.0	1.40
TR17-04	6.0 - 122.0	116.0	1.19
includes	108.0 – 120.0	12.0	5.53

TR17-05	64.0 – 116.0	52.0	1.06
TR17-06b	8.0 - 24.0	16.0	0.685
TR17-07	0.0 - 22.0	22.0	1.47

The 2015 Hyland Program represented the first ever heavy equipment supported exploration program Banyan has undertaken on the Project, and the first time since the early 1990's excavators and bulldozers were utilized on the Property. The successful March 2015 winter road mobilization of a D-6 Cat and PCS200 Excavator greatly enhanced the 2015 program by affording access construction (3.2 km) and targeted trench-based sampling (700m) of the Montrose Ridge Anomaly.

Access road construction and trenching at the Montrose Zone in 2015 was carried with a PCS200 excavator and D-6 dozer operated by Kluane Drilling. Approximately 700 m of lineal excavation in five trenches was completed along a 380 m strike length of the Montrose Ridge Zone soil geochemical anomaly. In total, 187 channel, chip and grab samples were collected from the 5 trenches and sent for analysis.

Trench assay highlights from 2015 include 6 m of 4.4 g/t Au from 0 to 6m in Trench MT-15-01, including 2 m of 13.1 g/t Au from 4 to 6 m. Trench MT-15-01 also returned 24 m of 0.47 g/t Au from 18 to 42 m, including 6 m of 1.3 g/t Au from 36 to 42 m. Trench MT-15-01 was 42 m long, however only 30 m were sampled due to overburden conditions from 6m to 18m. Chip and channel samples from other nearby trenches returned anomalous, but less significant values of gold and arsenic.

Trench assay highlights from the 2016 exploration program include Trench CZ-16-01, which returned <u>96 metres of 0.64 g/t Au from 0 to 96 metres</u>, including <u>56 metres of 1.03 g/t Au from 0 to 56 metres</u>. This trench was excavated in the Camp Zone, north of the 2015 diamond drill holes and was designed to test a previously untested portion of a zone interpreted to host the mineralized north-south trending Quartz Lake Corridor, the >18km long structure that is believed to control gold mineralization on the Hyland Gold Project. Trench CZ-16-01 intersected a broad fault zone consisting of predominantly gouge and brecciated clastic units of the Hyland Formation within the mineralized interval.

The 2017 Main Zone trench program consisted of six newly excavated and sampled trenches (TR17-03, 04, 06A, 06B, 06C and 07) in conjunction with the reopening, extending and sampling of three historic Main zone trenches (TR17-01, 02 and 05). The assay results from these trenches established gold mineralization extending over 150 metres beyond the extents of the 2016 Main Zone Resource and returned multi-gram gold and silver values over intervals of up to 116 metres. Highlighted results from the trenches include:

- 116 metres of 1.19 grams per tonne gold and 13.16 g/t silver from 6.0 to 122.0 metres in TR17-04;
- 56 metres of 1.42 g/t Au and 3.94 g/t Ag from 14.0 to 70.0 metres in TR17-02;
- 22 metres of 1.47 g/t Au and 49.98 g/t Ag from zero to 22 metres in TR17-07;
- Six metres of 1.15 g/t Au and 16.23 g/t Ag from 18 to 24 metres in TR17-06B.

These long, continuously mineralized intersections of gold and silver mineralization were punctuated by high-grade intervals such as 12 metres of 5.53 g/t Au and 64.65 g/t Ag and four metres of 11.88 g/t Au and 54.65 g/t Ag in TR17-04.

51

In addition to newly constructed trench sampling in 2017, a series of historic trenches were reopened and sampled to verify reported results, map structure and to gain a better understanding of the grade in that part of the zone where recovery of drill core proved challenging during the drilling due to the nature of the rock.

All exploration drill core and trench samples from the 2015 Hyland Gold Project were analyzed at Bureau Veritas Commodities Canada Ltd. (formerly Acme Analytical Laboratories) of Vancouver, B.C. utilizing the MA-200, 45-element analytical package with FA430 Fire Assay with Gravimetric finish for gold on all samples. All core samples were split on-site at Banyan's Hyland Gold exploration camp and shipped to the Laboratory's preparation facility in Whitehorse, YT where samples were sorted and crushed to appropriate particle size (pulp) and representatively split to a smaller size for shipment to the lab's Vancouver analysis facility. A system of standards was implemented in the 2015 exploration program and was monitored as chemical assay data became available.

All 2016 exploration trench samples collected from the Hyland 2016 program were analyzed at SGS Canada Inc. of Burnaby, B.C. utilizing the GE-ARM133, 48-element ICP analytical package with GE-FAA515 50-gram Fire Assay with Gravimetric finish for gold on selected samples. All trench samples collected from the Hyland Gold Project in 2016 were bagged and tagged at the trench face, with samples subsequently organized for final shipment at the Company's Quartz Lake Exploration camp. From there, samples were shipped to SGS Canada Inc.'s Burnaby laboratory where they were sorted and crushed to appropriate particle size (coarse crush) and representatively split to a smaller size.

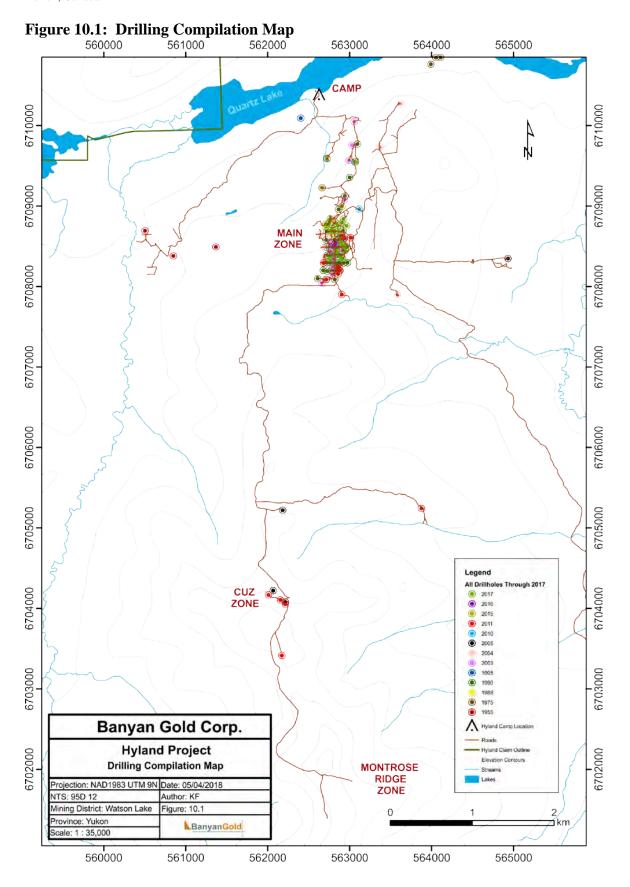
All trench samples collected from the 2017 Hyland exploration program were analyzed at Bureau Veritas Minerals of Burnaby, B.C., utilizing the four-acid digestion ICP-MS 35-element MA300 analytical package with FA450 50-gram fire assay with AAS finish for gold on all samples. All samples were collected and channel samples from within the constructed trenches and placed into numbered and marked sample bags with appropriate sample tags inserted. All these samples were delivered by Banyan personnel or a dedicated expediter to the Bureau Veritas, Whitehorse preparatory laboratory, where samples were crushed and shipped to Bureau Veritas's analytical laboratory in Burnaby, B.C., for pulverization and final chemical analysis. A robust system of standards was implemented in the 2017 exploration trench program and was monitored as chemical assay data became available.

2017 Trench lines were flagged in the field, then initially cleared with a Cat D6 dozer and then dug to an average depth of 1.5 m with a Komatsu 200 excavator, in some cases there was thick overburden and bedrock was not reached. Trenches were sampled continuously along their lengths using a standard two m sample interval except in areas of deep overburden. Sample intervals were marked in the field with spray paint to indicate beginning-end of sample intervals and the metre mark to indicate the location along the trench line. Samples were collect by chipping and chiseling exposed bedrock into poly ore bags, a sample tag was inserted for identification and then the sample bag was sealed in preparation for shipment to the assay lab. For quality assurance/quality control, a system of blanks and standards was inserted into the sample sequence every 20th sample and checked for accuracy upon receipt of assay results. Trenches were mapped and photographed, and the locations of the trenches were recorded utilizing a hand-held GPS.

10.0 DRILLING

Drilling on the Hyland property has focused primarily on the Main Zone area. Six distinct historical drilling campaigns have tested the area in 1988, 1990, 1995, 2003, 2005 and 2010-2011. Banyan has conducted diamond drilling programs in each of 2015, 2016 and 2017.

10.1 Drilling Completed by Previous Operators


The 1988 program consisted of diamond drilling over the core of the Main Zone. The 1990 program consisted of reverse circulation drilling over the core of the Main Zone and to the north of it. The 1995 program consisted of diamond drilling to the north of the Main Zone and off axis to the west of the Quartz Lake Lineament (QLL). The 2003 and 2005 core drilling programs focused on Main Zone targets as well as the QLL north and south of the Main Zone. The 2010 and 2011 core drilling campaigns targeted Main Zone mineralization as well as gold-arsenic and gold-bismuth soil geochemical anomalies to the east and south of the Main Zone (Figures 5.1 and 10.1).

While visiting the property in 2010, one of the authors of an earlier Technical Report (Gray of Armitage and Gray, 2012b) took numerous handheld GPS measurements of the location of marked historical drill collars. This data included 1990 collar locations from the Main Zone and collars from step out drilling to the north. On compilation of the historical data, discrepancies were noticed between the historical drill collar locations and the measured GPS locations. Investigation of possible UTM projection shifts in the data did not resolve the problem. A complete survey of all drill collar and trench locations relative to the grid and UTM coordinates was carried out in 2010 and 2011.

10.1.1 1988 Diamond Drilling

Four diamond drill holes totaling 375.8 m were drilled in 1988 by E. Caron Diamond Drilling Ltd. of Whitehorse (Dennett and Eaton, 1988). A unitized Longyear 38 drill was used and all holes were completed with either HQ or NQ equipment. Results from this program were severely hampered by recovery problems, particularly in strongly oxidized breccia and gouge zones that contain extremely hard, quartzite fragments in a soft limonite or clay matrix. Recovery in the top 40 m to 70 m of the holes was often as low as 1 or 2% and averaged about 20%. Most of the core that was recovered consisted of barren quartzite pebbles without any of the potentially mineralized breccia matrix. Heavy bentonite mud mixtures were used in all holes in an attempt to improve core recovery and build up the walls of the holes. Unfortunately, the clays and limonite that made up the mineralized matrix were suspended in the mud and would not settle out in sludge samples.

The core was logged and mineralized intervals were split and sent to Chemex where they were dried, crushed, ring pulverized, screened to -140 mesh and homogenized before a one assay ton split was taken and fire assayed for gold using a gravimetric finish. Several of the most promising intervals were not sampled because recovery was less than five percent. The remaining core was stored on the property.

All holes were located within the central fault-breccia complex, testing beneath some of the better trench intersections. Results are briefly described below.

Hole 88-1 tested down dip from a fault zone in Trench P-25 that assayed 2.25 g/t Au over 22.7 m. The hole cut a mixture of quartzites and phyllites that are well fractured and in places strongly sheared and brecciated. Recovery ranged from 0 to 100% but was generally less than 10% in sheared or brecciated intervals. The rocks are well oxidized to 45 m. The best assay was 2.19 g/t Au, over 3.0 m, from a highly pyritic horizon occurring near the bottom of the hole.

Holes 88-2 and 88-3 were drilled in opposite directions from the same collar and explored beneath well mineralized intervals in Trench P-23. The upper half of Hole 88-2 cut a series of broad faults while the bottom half intersected fairly massive phyllite, siderite and limestone. The top half is totally oxidized and recovery averaged only about 10%. Most of the material recovered consists of rounded, barren quartzite fragments. The best intersection from the hole was 3 m of 0.96 g/t Au compared 1.93 g/t Au over 45 m in the overlying trench.

Hole 88-3 appears to have been drilled down the bedrock dip. Recovery was generally better than that obtained in Hole 88-2 but in two 12 m intervals no core was recovered. The rocks are a mixture of phyllite and quartzite and the base of oxidation is at 64 m. None of the assays from this hole exceeded 0.70 g/t Au even though the trench directly above it averaged 1.50 g/t Au over 52.3 m.

Hole 88-4 was drilled beneath Trench P-25 at the north end of the central fault-breccia complex. The highest assay (1.17 g/t Au over 3 m) came from a quartz and pyrite rich band located 65 m down dip of a 5 m interval in the trench that assayed 2.23 g/t Au. The apparent dip of this zone is about 80° toward the west.

10.1.2 1990 Reverse Circulation (RC) Percussion Drilling

A total of 3,656 m in forty-one reverse circulation (RC) holes were drilled during the 1990 field season. Thirty-five holes were drilled on 100 m sections over the core of the Main Zone, while six second phase holes were wide spaced step-outs drilled to the north of the Main Zone, testing for extensions of mineralization. All work was carried out by E. Caron Diamond Drilling Ltd. of Whitehorse using a truck-mounted rotary percussion drill. Reverse circulation with a down-hole hammer was most often used; however conventional circulation was used to aid recovery in badly broken ground. Select drill intersections from the Main Zone deposit included 2.65 g/t gold over 16.7 m in PDH90-09 and 1.19 g/t gold over 129.7 m in PDH90-41. Select intersections from step out drilling to the north averaged 1.0 g/t gold over 13.7 m in PDH90-34 and 0.9 g/t gold over 33.6 m in PDH90-34 (Table 10.1).

10.1.3 2003 and 2005 Diamond Drilling Programs

During the summer of 2003 StrataGold conducted two phases of diamond drilling totaling 2416 m, to better understand and define the extension of the QLL. This structural feature appears to trend for at least 13 km and

Figure 10.2: Main Zone and Camp Zone Drilling Compilation Map

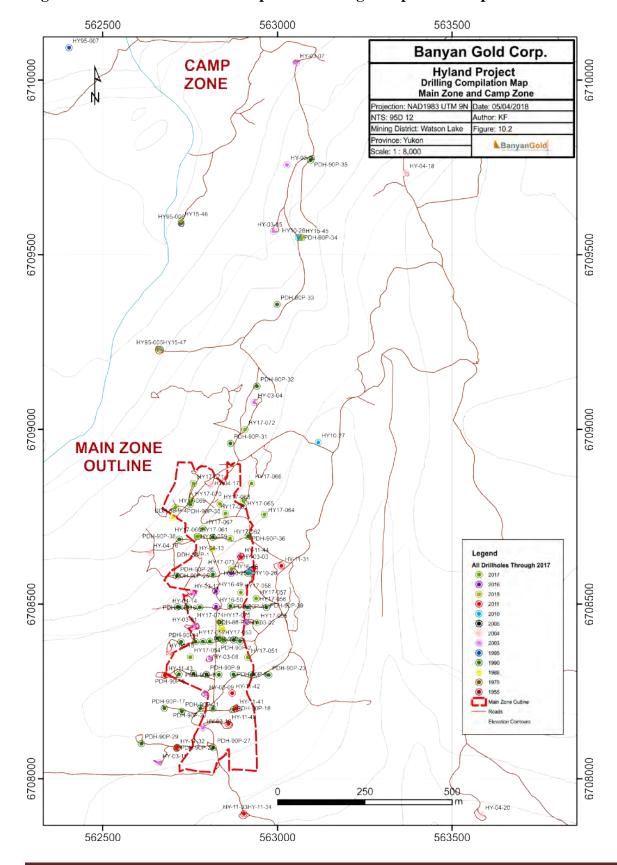


Table 10-1 Summary of Significant Main Zone Drill Intersections (1990 – 2003)

Hole		From(m)	To (m)	Width (m)	Au (g/t)
PDH90-01*		0.0	12.2	12.2	2.1
		18.3	21.4	3.1	0.8
		44.2	48.8	4.6	0.5
PDH90-02		6.1	13.7	7.6	0.8
		27.4	32.0	4.6	1.7
		39.6	42.7	3.1	0.9
		61.0	82.6(EOH)	21.6	0.8
PDH90-03		3.0	6.1	3.1	0.9
		8.5	11.6	3.1	5.3
		32.0	42.7	10.7	0.7
		50.3	53.3	3.0	1.1
PDH90-05		6.1	15.2	9.1	1.2
		18.3	21.4	3.1	0.6
		24.4	38.1	13.7	0.5
		56.4	67.1	10.7	0.5
PDH90-06		15.2	18.3	3.1	2.0
		38.1	48.8	10.7	0.5
PDH90-07		0.0	3.0	3.0	0.8
		7.6	19.8	12.2	1.8
		68.6	71.6	3.0	0.7
PDH90-08		10.7	22.9	12.2	1.3
		27.4	35.0	7.6	0.7
		44.2	47.2	3.0	0.6
PDH90-09		0.0	16.7	16.7	2.7
	includes	9.1	12.2	3.1	6.6
		36.6	39.6	3.0	0.6
		50.3	56.4	6.1	0.6
		109.7	112.8	3.1	0.7
		115.8	126.5	10.7	0.8
		130.0	137.1	7.1	1.5
		140.2	152.9(EOH)	12.7	1.6
PDH90-10		24.4	27.4	3.0	0.5
PDH90-11		1.5	7.6	6.1	1.2
		18.3	39.6	21.3	1.6
		42.7	45.7(EOH)	3.0	0.6
PDH90-13		29.0	32.0	3.0	0.7
		45.7	50.3	4.6	0.5

Hole	From(m)	To (m)	Width (m)	Au (g/t)
PDH90-14	18.3	21.4	3.1	0.5
PDH90-15	10.7	18.3	7.6	0.8
	64.0	67.1	3.1	0.5
PDH90-16	0.0	12.2	12.2	1.3
	36.6	44.2	7.6	0.6
	56.4	59.4	3.0	0.5
PDH90-18	13.7	29.0	15.3	0.7
PDH90-19	3.1	6.1	3.0	0.8
	30.5	38.1	7.6	0.7
PDH90-20	18.3	22.9	4.6	0.4
	25.9	28	3.1	0.7
	100.6	105.2	4.6	0.5
PDH90-21	1.5	4.6	3.1	0.6
	7.6	12.2	4.6	0.5
PDH90-22	21.4	24.4	3.0	1.0
	29.0	32.0	3.0	1.0
PDH90-23	111.3	114.3	3.0	0.9
PDH90-24	21.4	30.5	9.1	1.7
	54.8	70.1	15.3	0.9
PDH90-25	0.0	3.0	3.0	0.6
	9.1	15.2	6.1	0.6
	126.3	129.5	3.2	0.5
PDH90-26	1.5	9.1	7.6	0.8
	21.4	24.4	3.0	0.4
PDH90-27	7.6	15.2	7.6	0.8
PDH90-28	44.2	47.2	3.0	0.4
	73.1	77.7	4.6	0.4
PDH90-29	6.1	9.1	3.0	0.4
PDH90-30	0.0	7.6	7.6	0.8
	22.9	27.4	4.5	0.5
	32	35.1	3.1	0.5
	45.7	48.7	3.0	1.0
PDH90-33	25.9	30.5	4.6	0.7
	82.3	88.4	6.1	1.4
PDH90-34	0.0	13.7	13.7	1.0
	16.8	19.8	3.0	0.6
	45.7	79.3 (EOH)	33.6	0.9
PDH90-35	19.8	25.9	6.1	0.8
	44.2	47.2	3.0	0.6
PDH90-36	27.4	32.0	4.6	1.2

Hole	From(m)	To (m)	Width (m)	Au (g/t)
	38.1	44.2	6.1	0.5
	64.0	67.1(EOH)	3.1	1.5
PDH90-37	0.0	4.6	4.6	1.1
	134.1	143.2 (EOH)	9.1	0.9
PDH90-38	3.1	13.7	10.6	0.6
	22.9	25.9	3.0	0.8
PDH90-41	0.0	6.1	6.1	0.6
	12.2	141.9	129.7	1.2
DDH95-05	50.3	53.9	3.6	0.5
	73.0	81.1	8.1	0.5
	124.2	127.5	3.3	0.4
DDH95-06	57.1	63.1	6.0	0.9
	68.9	72.0	3.1	0.6
	77.7	80.7	3.0	0.5
	101.3	104.9	3.6	0.7
HY-03-001	137.16	154.38	17.22	1.29
HY-03-001	137.16	140.98	3.82	3.56
HY-03-002	7.62	35.62	28.0	0.93
HY-03-002	7.62	12.51	4.89	1.31
HY-03-002	26.42	35.62	9.2	1.68
HY-03-002	55.09	108.2	53.11	1.38
HY-03-002	84.38	89.92	5.54	4.24
HY-03-002	118.61	121.29	2.68	0.78
HY-03-002	149.38	153.98	4.6	0.83
HY-03-002	179.91	184.4	4.49	0.9
HY-03-003	28.46	32.0	3.54	2.9
HY-03-003	47.24	53.73	6.49	2.02
HY-03-003	62.48	65.53	3.05	1.59
HY-03-004	81.99	97.63	15.64	0.33
HY-03-004	106.37	108.66	2.29	0.61
HY-03-008	113.2	121.85	8.65	0.67
HY-03-008	131.7	140.0	8.3	0.81
HY-03-008	135.9	140	4.1	1.31
HY-03-009	136.0	140.73	4.73	0.98
HY-03-009	153.15	165.5	12.35	0.98
HY-03-010	49.18	55.7	6.52	0.63
HY-03-010	68.9	74.2	5.3	0.62
HY-03-011	117.39	122.94	5.55	0.69
HY-03-012	102.65	112.47	9.82	0.76
HY-03-012	133.73	143.36	9.63	1.57

* PDH holes are reverse circulation percussion drill holes, all others are diamond drill holes

contains a 3.2 km long area of anomalous gold, arsenic and bismuth revealed by soil geochemical survey resultss. A 2004 exploration program included eight diamond drill holes totaling 1,800 m. In 2005, exploration work consisted of four diamond drill holes totaling 985 m, one which followed up on an IP/res geophysical target defined in 2004 east of the Main Zone, as well as targeting soil geochemical anomalies in the Cuz Zone that are coincident with apparent structural features four km south of the Main Zone.

Significant intercepts from the historic drilling programs at the Main Zone are listed in Table 10.1

10.1.4 2010 and 2011 Diamond Drilling Programs

Twenty drill holes totaling 3,953 m were completed in 2010 and 2011 by Argus. In 2010 four diamond drilling holes totaling 765 m were drilled in the Main Zone and its northern extension. Apex diamond drilling of Smithers, BC drilled HQ and NQ sized drill core using a heli-supported drill rig. Significant results included HY-10-25 with 9.13 m of 2.08 g/t gold and 13.51 g/t silver and Hole HY-10-26 with 34.74 m of 1.1 g/t gold and 3.79 g/t silver, extending the Main Zone mineralization to the east.

In 2011, 16 diamond drill holes were completed for a total of 3,218 m of NQ and HQ drilling targeted the Main Zone deposit, and soil anomalies to the south and east of the Main Zone and one vein hosted target south of the Cuz Zone. Candrill Global Ltd. of Tisdale Saskatchewan executed the program with a "A5" skid mounted drill rig. As in previous drill programs, recovery was difficult in the upper oxide zone, however through effective control of drill torque and water pressure, as well as reduced core increased core retrieval cycles there was a noticeable increase in recovery and competence of core material.

Significant results included HY-11-29, 39.4 m of 0.80 g/t gold and 3.28 g/t silver from 71.6 m to 111.0 m depth, HY-11-31, 42.2 m of 0.78 g/t gold and 2.38 g/t silver from 143.8 m to 186.0 m depth, including 9.2 m of 1.79 g/t gold and 0.36 g/t silver from 143.8 m to 153.0 m depth and HY-11-30, 1.5 m of 1.56 g/t gold from 75.0 to 76.5 m (a zone of no recovery of 7.5 m and then 3 m of 0.33g/t gold and 11g/t silver).

HY-11-41 intersected 25.9 m grading 2.03 g/t gold and 6.42 g/t silver from 122.9 to 148.8 m within 144.3 m grading 0.54 g/t gold and 2.84 g/t silver from 3.0 to 148.8 m, including 1.5 m of 11.7 g/t gold and 20.1 g/t silver at 131.2 m which extends Main Zone mineralization to depth and to the east. HY-11-40 intersected 17.7 m grading 1.0 g/t gold and 8.0 g/t silver from 99.3 to 117 m which extends Main Zone mineralization to the east. HY-11-42, 21.0 m returned 1.1 g/t gold and 15.0 g/t silver from 48 to 69 m within 45 m of 0.65 g/t gold and 7.8 g/t silver from 24 to 69 m which extends Main Zone mineralization to the east.

DDH HY-11-37 intersected 4.5 m grading 1.93 g/t gold from 25.9 to 30.4 m and 4.5 m grading 0.65 g/t gold from 10.5 m to 15 m in the Cuz Zone discovery hole. Drill hole HY-11-36 intersected 6 m grading 1.38 g/t gold from 9.0 to 15.0 m and 1.5 m grading 1.52 g/t gold from 25.50 m to 27.0 m 80m northwest of discovery hole HY-11-36. Drill hole HY-11-38 with 3.6 m grading 1.12 g/t gold from 16.4 to 20.0 m is located 240 m northwest of discovery hole HY-11-36. These three drill holed extend Cuz Zone mineralization over 240 m of east-west strike coincident with a previously defined arsenic soil geochemical anomaly.

10.2 Diamond Drilling Completed by Banyan Gold Corp.

10.2.1 2015 Drilling

During 2015 Banyan carried out 740 metres of HQ and ND diamond drilling in three holes within the Camp Zone. Minor amounts of carbonate-hosted pyrite, arsenopyrite, pyrrhotite, sphalerite, galena, bismuthinite and native copper were intersected (Banyan Gold Corp, 2015).

Results from the drill program of the 2015 Hyland Gold exploration program include:

- Drill hole HY-15-45: 31.08 m of 0.4 g/t gold from 2.45 to 33.53 m including 13.43 m of 0.62 g/t gold from 2.45 to 15.88 m. Elevated base metals were encountered at depth in this hole, beyond a fault zone, including a 1.14m interval that returned 870 ppm copper complete with an over limits (>200 g/t) silver analysis,
- Drill hole HY-15-46: 76.34 m of 0.32 g/t gold from 75.56 to 151.90 m including 20.95 m of 0.41 g/t gold from 73.88 to 94.83 m and 35.9m of 0.36 g/t gold from 116.0 to 151.9 m.
- Drill hole HY-15-47: 88.7 m of 0.24 g/t gold from 35.52 to 135.22 m which includes intervals of 29.82 m of 0.33 g/t Au from 45.52 to 75.34 m and 23.68 m of 0.37 g/t Au from 110.54 to 134.22 m.

Hole HY-15-47 intercepted an anomalously high interval of 2000 ppm* lead from 94.7 to 127.43m.

*2000 ppm requires further definition as three of the intervals (5.23 m of the total interval) returned >10,000ppm lead and will require over limits analyses to more accurately define the grades. Over limits zinc assays will be required from these intervals as well.

10.2.2 2016 Drilling

Three HQ/NQ drill holes totaling 475 m in length (312 drill core samples were collected and analyzed as part of the diamond drilling program and additionally mineralized oxide and sulphide material from the Main Zone was collected and tested for metallurgical recovery. Drill core assays ranged from trace to 6.68 g/t Au and averaged 0.46 g/t Au. Only 16 of the 312 samples returned over 2.0 g/t Au, a fact that highlights the consistent nature of the Main Zone mineralization.

The drill program targeted in-fill and extension of the Main Zone gold-silver deposit. Each of the three holes drilled in 2016 returned long intervals of Main Zone mineralization including: 30.7 m of 1.30g/t Au and 8.0 g/t Ag from 18.3 to 49.0 m (drill hole HY-16-48); 27.1 metres of 1.02 g/t Au and 16 g/t Ag from 24.4 to 51.5 m (drillhole HY-16-49); and 35.7 m of 1.00 g/t Au and 2.5 g/t Ag from 76.0 to 111.6 metres (drill hole HY-16-10). The 2016 drill results have further confirmed the structure and continuity of the Main Zone gold-silver Resource and highlight the grade potential at Hyland's Main Zone. The Main Zone Deposit remains open for expansion to the east, north and to depth.

Table 10-2: Selected Intervals from Hyland Main Zone 2016 Drill Program

Hole ID	From (m)	To (m)	Length (m)	Gold (g/t)	Silver (g/t)
HY-16-48	1.2	103.0	101.8	0.67	5.3
including	18.3	49.0	30.7	1.30	8.0
and including	61.0	103.0	42.0	0.57	4.7
HY-16-49	0.0	143.0	143.0	0.50	12.2
including	24.4	51.5	27.1	1.02	16.0
and including	90.5	124.0	33.5	0.75	7.0
HY-16-50	0.0	125.0	125.0	0.70	4.8
including	15.2	67.5	52.3	0.83	3.3
and including	76.0	111.6	35.7	1.00	2.5

10.2.3 2017 Drilling

The 2017 year's exploration efforts were focused on increasing confidence in the Main Zone Resource model as well as targeting resource expansion via testing the northern portion of the Main Zone, a previously undertested zone prospective for the continuation of the Main Zone gold-silver mineralization.

Field work on the Hyland Gold Project began on July 6th, 2017 and was completed on September 27, 2017 with 3,850 m of diamond drilling (Kluane Drilling of Whitehorse utilized as drill contractor) in 25 holes and the collection of 2,521 drill core samples sent for analysis to Bureau Veritas Minerals, two of the 25 holes (HY17-073 and 074) were dedicated holes for metallurgical testing.

Drilling results from the Main Zone confirmed the results of previous operators, filled in gaps in the existing Main Zone drillhole coverage, and demonstrated that the model of an overturned antiform is valid for the deposit. The penultimate focus of the 2017 drill program was to extend defined mineralization to the north of the Main Zone

Summary of significant diamond drillhole results from the Hyland Gold Project 2017 program are presented in the following table.

Table 10-3: Selected Intervals from Hyland Main Zone 2017 Drill Program

Hole	From (m)	To (m)	Width (m)	Gold (g/t)	Silver (g/t)
HY17-051	33.5	141.7	108.2	0.44	2.5
incl.	69.0	82.3	15.3	0.99	4.3

HY17-055	83.6	141.0	57.4	0.85	3.3
HY17-056	79.4	174.0	94.6	0.65	7.0
HY17-057	138.0	184.0	46.0	1.60	6.5
HY17-058	117.0	131.1	14.1	0.87	2.1
HY17-062*	23.4	102.7	79.3	0.69	5.2
HY17-063*	128.5	132.7	4.2	0.84	9.1
incl.	131.0	132.7	1.7	1.76	21.0
HY17-065*	33.2	87.1	53.9	0.93	6.0
HY17-066	31.4	63.4	32.0	0.33	3.3
incl.	46.1	54.9	8.8	0.69	10.3
HY17-067	161.4	200.1	38.0	1.18	3.9
HY17-068**	0	66.6	66.6	0.73	6.1
HY17-070	0	39.0	39.0	0.41	5.1
HY17-071	0	9.1	9.1	0.45	23.3
HY17-072	88.6	102.6	14.0	0.36	0.1

Unless otherwise noted, drill intercepts are reported as core intervals, true widths are estimated to be 80-90% of true widths.

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

11.1 Surface Soil and Rock Sampling

Carne and Halleran (1986) document the collection, transportation and analysis of samples collected in early exploration programs. Samples were packaged in 20 kg lots in sealed rice bags that were transported to Whitehorse under continuous chain of custody by Archer Cathro employees. They were then shipped by air or truck to Chemex Labs Ltd. (Chemex) in North Vancouver (now ALS Laboratory Group) for analysis.

Much of the current central project area was geochemically surveyed in 1973, 1974 and 1975 during base metal exploration programs. At that time arsenic analyses were carried by Atomic Absorption Spectroscopy (AAS) out on -80 mesh fractions of soil and silt samples digested in nitric-perchloric acid. Pulps from these analyses were retained by Archer Cathro and in 1984, following the staking of the Piglet 1-32 claims, these were reanalyzed for gold by Fire Assay preconcentration for Neutron Activation Analysis (FA-NAA). Soil samples collected on the Quiver claims in 1982 were analyzed for gold by FA-NAA on -35 mesh fractions of the samples. Samples were later reanalyzed for arsenic, bismuth, lead, copper, tungsten and manganese by Induced Couple Plasma (ICP) technique and for antimony using AAS.

Soil samples collected on the Piglet claims in the current main Zone area in 1984 were screened to -35 mesh, pulverized to better than -100 mesh and analyzed by FA-NAA for gold. This procedure was utilized to minimize the anticipated effect of silica encapsulation of micron-sized gold in detrital material. Rock samples were crushed and pulverized to -100 mesh and analyzed for gold by the same method. Over 2000 soil samples were collected in 1986 over a 3.3 square km area in the central part of the Project area. These samples form the

^{*}True widths are estimated to be 60-70% of drill core intervals

^{**}True width equals drill core interval

basis of the current geochemical data set. They were analyzed for gold by the same method as the 1984 samples. Every second sample also underwent 30 element analysis by the ICP method.

Soil geochemical sampling in 1987 was confined to a restricted area south of the previous grid sampling over the Main Zone. A total of 164 samples were collected and sipped to Chemex in North Vancouver where they were dried, screened to -35 mesh, pulverized to -140 mesh and analyzed for gold using FA-NAA. No analyses were done for other elements (Dennett and Eaton, 1987).

Grid soil sampling in 1999 focussed on the area south and east of the Cuz Zone and north of the Main Zone on the north side of Quartz Lake where the Quartz Lake Lineament passes into a low lying swampy area. A total of 269 samples were collected and sent to Chemex in North Vancouver for analysis. They were dried, sieved to -35 mesh, pulverized to -150 mesh and analyzed for gold using FA-NAA followed by 32 element ICP analysis (Gish, 2000). Soil sampling in 2001 was carried out over widespread, untested areas of the Project. Treatment and analyses and of the samples were the same as in 1999 (Carne, 2002).

In 2013, soil samples collected in the field were sealed at the sample point with sample numbers written on the kraft sample bags and a 3 part tag was inserted into each sample bag at the sample site (Gray, 2014a) The samples were then placed into sealed rice bags which were then shipped via float plane to Watson Lake and then by truck to the Acme Analytical Labs preparation facility in Whitehorse, Yukon. There the samples were sorted and crushed to an appropriate particle size (pulp) and representatively split to a smaller size that was shipped to Acme's Vancouver analysis facility, an ISO 9001:2008 certified, independent laboratory, utilizing a 1DX ICP 30 element analytical package with G6 Fire Assay finish for gold on all samples.

In 2014 Banyan collected and shipped 491 samples (452 soils and 39 rocks) from the soil grid sampling program south of the Cuz showing on Montrose Ridge. All samples were sent for analyses to AGAT Labs in Whitehorse, YT where they were prepped and subsequently analyzed for 50 element ICP assay with a 30g Fire Assay finish. (Gray, 2014b). A systematic, portable XRF analysis soil sampling program was conducted in the field on the Montrose Ridge gold and arsenic-in-soils anomaly. This grid-based soil sampling program was conducted to confirm XRF analyses effectiveness as well as in-fill and extend the 2013-2014 Montrose Ridge geochemical anomaly. It was determined that the XRF analyses of Montrose soil samples reported comparable arsenic-in-soils results to the 2013 and 2014 geochemical analyses; and additionally that bismuth was a highly applicable pathfinder element for the Montrose Ridge gold-in-soils anomaly (Gray 2015).

11.2 Diamond Drill Core

11.2.1 2010 and 2011 Diamond Drilling Programs

Results of the 2010 and 2011 diamond drilling programs were used to calculate the mineral resource for the Main Zone. Sample preparation, analyses and security for earlier programs were not routinely detailed in reports of historical work and they are not summarized here. Core sampling on the Hyland Gold Project was supervised by Gray from July 2010 through October 2011. The authors of this report have determined and are confident that adequate sample preparation, analyses and security procedures for drill core handling on the Hyland Gold Project in 2010 and 2011 were all performed in accordance with industry standards.

Core was geologically logged on-site. Rock Quality Designation (RQD) was measured in accordance to ASTM D6032-08 standard, by measuring all recovered core greater than or equal to 10 cm in length. Percentage core recovery was measured, and all drill core was photographed after being marked-out for sampling but prior to

splitting. Core recovery is variable with higher loss in oxide horizons which means that the core sample assay results may under represent the gold and silver content of the sampled intervals.

The core within each sample interval was split in half lengthwise using a Longyear wheel-type core splitter. The selected intervals generally included all intervals containing significant (greater than 5%) quartz and/or carbonate veining, visible sulphides, and altered rocks for several metres on either side of the main vein intervals. Vein material was generally sampled in one metre intervals, with variations to allow for the occurrence of major structures or lithologic contacts. Wallrock samples outside of the vein zones were sometimes sampled over lengths of up to 1.5 metres. Pre-numbered assay tags were inserted into the sample bags with the core sample, and a matching assay tag was stapled onto the core box, at the top of the sample interval. The remaining half core was kept for reference, in the core box, which is stored in camp at the Hyland Gold Project.

The samples were sealed into standard heavy poly plastic bags and then placed into sealed rice sacks which were then shipped via float plane to Watson Lake and then by truck to the ACME Analytical Labs preparation facility in Whitehorse Yukon. At the Acme Analytical Labs preparation facility in Whitehorse samples were sorted and crushed to appropriate particle size (pulp) and representatively split to a smaller size shipped to Acme's Vancouver analysis facility. Assays were performed at the Vancouver, British Columbia facility of AcmeLabs, an ISO 9001:2008 certified, independent laboratory, utilizing a 1EX ICP 44-element analytical package with G6 Fire Assay finish for gold on all samples with 0.005 g/t 10 ppm Fire Assay 30g – AA Finish (Automatic gravimetric over limits analyses).

11.2.2 2015 Diamond Drilling Program

All exploration drill core samples from the 2015 Hyland Gold Project were analyzed at Bureau Veritas Commodities Canada Ltd. formerly Acme Analytical Laboratories) of Vancouver, B.C. utilizing the MA-200, 45-element analytical package with FA430 Fire Assay with Gravimetric finish for gold on all samples. All core samples were split on-site at Banyan's Hyland Gold exploration camp and shipped to the Laboratory's preparation facility in Whitehorse, YT where samples were sorted and crushed to appropriate particle size (pulp) and representatively split to a smaller size for shipment to the lab's Vancouver analysis facility. A system of standards was implemented in the 2015 exploration program and was monitored as chemical assay data became available (Banyan Gold, 2015).

11.2.3 2016 Diamond Drilling Program

All drill core samples collected from the Hyland 2016 program were analyzed at SGS Canada Inc. of Burnaby, B.C. utilizing the GE-ICP14B, 34-element ICP analytical package with GE-FAA515 50-gram Fire Assay with Gravimetric finish for gold on all samples. GE_ICP14B. All core samples were split on-site at Banyan's Quartz Lake exploration camp core processing facilities. Once split, half samples were placed back in the core boxes with the other half of split samples sealed in poly bags with one part of a three-part sample tag inserted within. All these samples were shipped to the SGS's Burnaby, B.C. laboratory where samples were sorted and crushed to appropriate particle size (pulp) and representatively split to a smaller size for analysis. A robust system of standards was implemented in the 2016 exploration drilling program and was monitored as chemical assay data became available.

11.2.4 2017 Diamond Drilling Program

All drill core, trench and soil samples collected from the Hyland Gold program were analyzed at Bureau Veritas Minerals of Burnaby, B.C. utilizing the four acid digestion ICP-MS 35-element MA300 analytical package with FA450 50-gram Fire Assay with AAS finish for gold on all samples. All core samples were split on-site at Banyan's core processing facilities at the Hyland Gold Project. Once split, half samples were placed back in the core boxes with the other half of split samples sealed in poly bags with one part of a three-part sample tag inserted within. All these samples were delivered by Banyan personnel or a dedicated expediter to the Bureau Veritas, Whitehorse preparatory laboratory where samples are prepared and then shipped to Bureau Veritas's Analytical laboratory in Burnaby, B.C. for pulverization and final chemical analysis. A robust system of standards were implemented in the 2017 exploration drilling and trenching program and were monitored as chemical assay data become available.

11.3 Reverse Circulation Drill Cuttings

Recovery reported by Sax and Carne (1990) was estimated by the relative volume of sample collected. In general, they estimated that recoveries were much better than those from the diamond drilling from the 1988 program, averaging roughly 80%. However, re-analysis of the data by Armitage and Gray (2012b) indicates that recoveries greater than 100% were not uncommon, indicating erosion of the hole wall and contamination of samples. A recalculation of the interval-weighted recoveries as recorded in the drill logs gives an overall recovery of 64%. Recalculating with intervals with recovery greater than 100% set to 100% gives an overall average recovery of 60%. This poorer number also agrees with the opinions of Carne (2000) who remarked that the RC program did not successfully test the tenor of gold mineralization at the Main Zone.

In holes where recovery was difficult, foam was injected to help float the cuttings. Cuttings were removed using compressed air so that water encountered in the holes was ejected with the cuttings. The leached and oxidized parts of the zone are typically dry and the top of the water table approximately coincides with the upper part of the sulphide zone. Excessive water pressure was encountered in many of the deep holes, especially the step-out holes to the north. High hydrostatic pressure offsets downward force on the bit by lifting the drill string. Since the down-hole hammer system relies on cutting face pressure to trigger the hammer, rate of advance in artesian holes was reduced to the point where the drilling was frequently abandoned short of the target depth.

Samples were sent to Chemex Labs Ltd., (now ALS Laboratory Group) North Vancouver for assay where they were dried, crushed, split and pulverized to -150 mesh. A ten gram split was analyzed by fire assay collection with atomic absorption finish with results reported in ppb or g/t. Results above 10,000 ppb were reanalyzed with results reported in ounces per ton.

12.0 DATA VERIFICATION

12.1 Quality Assurance and Quality Control (QA/QC) Programs

Soil and rock geochemical sampling programs carried out from the early 1970's to 2001 in the current Project area were conducted and supervised by Archer Cathro. Duplicate samples were not introduced in the sample stream, nor were blanks and standards used. There was no data verification with rigorous statistical analysis of the data sets.

The diamond drill program carried out in 1988 over the Main Zone was supervised by Archer Cathro. Duplicate samples were not introduced in the sample stream, nor were blanks and standards used. There was no data verification with rigorous statistical analysis of the data sets.

During the 1990 RC drilling program duplicate samples were collected and analyzed to test the reliability of the sample splitting process. With few exceptions, duplicate sample assay variability was found to be within 10% of the original split. Dust samples from the cyclone exhaust were collected and analyzed for gold but results did not indicate much variation from analysis of chip samples from the same intervals. There were no blanks or standards used to verify the laboratory results.

A rigorous quality assurance/quality control program was initiated for the Hyland 2003-2005 drill programs. A target goal of a minimum of 5% company duplicate/ check assay sample program in excess of within assay laboratory duplicates was initiated to provide good control of the quality of gold assay data being reported for the project. Generally, every 20th sample in the sample stream was selected as a primary duplicate. This sample consists of half core, cut or split, and is identified on the assay submittal sheet for duplicate and check assay work. Two analytical duplicate fire assays are performed from pulps at the primary assay laboratory (ALS – Chemex) while the coarse reject of this sample is shipped to the check assay lab (ACME Analytical) for a complete check duplicate by fire assay. A 5% blind field duplicate is also submitted to the primary assay laboratory and consists of a quartering of the remaining half core of the primary duplicate sample.

Routine duplicate and blank samples were also inserted into the core sample stream from the Hyland Gold Project in 2010 and 2011. These sampling protocols were included in drill core sampling, rock sampling, soil sampling and stream sediment sampling. In specific, every 20 samples saw an alternating insertion of known certified standards, certified blanks and field duplicate core samples (half bag split), respectively. These insertions were compounded with requests for Acme to insert AML Standards which had previously been delivered to them, one in each job number as well as instructions on systematic crusher duplicate at the prep lab stage.

Performance of the low-grade gold standard CRM GS P7B was generally good (Figure 12.1) although there were two significant failures, as defined by values more than 3 standard deviations either above or below the calculated mean for the CRM (i.e. the expected value). The performance of silver by aqua regia digestion was similar, with one clear failure and several samples just outside the 3 standard deviation limits (Figure 12.2).

The fire assay Au results for intermediate grade gold standard CRM 1P5D are generally acceptable, with most analyses lying within 2 standard deviations of the expected value (Figure 12.3). However, two samples suggest an unacceptable positive bias in the data, with two consecutive samples greater than 2 standard deviations above the calculated mean.

The 2010 drilling program did not insert standards into the sample stream, relying on the routine laboratory standards program. Blanks were inserted into the sample stream in the field to determine whether or not sample contamination occurred after collection. Duplicate samples were collected with the sawn half of the core quartered and both quarter samples submitted as field duplicates. Black (2011) considered that, despite a mild level of field or laboratory contamination indicated by analysis of the blank samples, the analytical results were considered reasonably accurate at the concentrations of interest for gold, silver and accompanying low levels of base and indicator metals in the mineralized intersections. Field duplicate analyses suggested acceptable levels of precision and reproducibility, with variation likely due to heterogeneity of the mineralization. Black (2011) recommended that future drilling programs should consider using laboratory inserted duplicates of prepared samples to ensure that assay pulps are representative of the submitted sample.

12.2 Quality Assurance and Quality Control (QA/QC) of 2011 Drill Programs

Armitage and Gray (2012b) have reviewed the duplicate sample results and determined that variation between them is not significant. Armitage and Gray (2012b) have reviewed the blank sample results and determined that no contamination within the laboratory is indicated by them.

12.3 Quality Assurance and Quality Control (QA/QC) of 2015 Drill Programs

All exploration drill core and trench samples from the 2015 Hyland Gold Project were analyzed at Bureau Veritas Commodities Canada Ltd. (formerly Acme Analytical Laboratories) of Vancouver, B.C. utilizing the MA-200, 45-element analytical package with FA430 Fire Assay with Gravimetric finish for gold on all samples. All core samples were split on-site at Banyan's Hyland Gold exploration camp and shipped to the Laboratory's preparation facility in Whitehorse, YT where samples were sorted and crushed to appropriate particle size (pulp) and representatively split to a smaller size for shipment to the lab's Vancouver analysis facility. A system of standards was implemented in the 2015 exploration program and was monitored as chemical assay data became available.

12.4 Quality Assurance and Quality Control (QA/QC) of 2016 and 2017 Drill Programs

All drill core samples collected from the Hyland 2016 program were analyzed at SGS Canada Inc. of Burnaby, B.C. utilizing the GE-ICP14B, 34-element ICP analytical package with GE-FAA313 50-gram Fire Assay with Gravimetric finish for gold on all samples. GE_ICP14B. All core samples were split on-site at Banyan's Quartz Lake exploration camp core processing facilities. Once split, half samples were placed back in the core boxes with the other half of split samples sealed in poly bags with one part of a three-part sample tag inserted within. All these samples were shipped to the SGS's Burnaby, B.C. laboratory, where samples were sorted and crushed to appropriate particle size (pulp) and representatively split to a smaller size for analysis. A robust system of standards was implemented in the 2016 exploration drilling program and was monitored as chemical assay data became available.

All drill core, trench and soil samples collected from the Hyland 2017 program were analyzed at Bureau Veritas Minerals of Burnaby, B.C. utilizing the four acid digestion ICP-MS 35-element MA300 analytical package with FA450 50-gram Fire Assay with AAS finish for gold on all samples. All core samples were split on-site at Banyan's core processing facilities at the Hyland Gold Project. Once split, half samples were placed back in the core boxes with the other half of split samples sealed in poly bags with one part of a three-part sample tag inserted within. All these samples were delivered by Banyan personnel or a dedicated expediter to the Bureau Veritas, Whitehorse preparatory laboratory where samples are prepared and then shipped to Bureau Veritas's

Analytical laboratory in Burnaby, B.C. for pulverization and final chemical analysis. A robust system of standards were implemented in the 2017 exploration drilling and trenching program and were monitored as chemical assay data become available.

Quality control procedures used by Banyan Gold to monitor 2016 and 2017 drilling assay results within the Main Zone of the Hyland project consisted of inserting a control sample at a frequency of approximately "every 15 samples". Control samples consisted of 68 quarter core duplicates and 279 standard reference materials and 69 blank samples. In addition, in-house laboratory QA/QC protocols analyzed a total of 67 coarse reject sample duplicates and a total of 79 pulp duplicates. Control sample insertions are summarized in Table 12-1.

Table 12-1 Au Duplicate and Standard Reference Material Insertion Summary

Year	Core	Analysis	Quarter	Coarse	Pulp	Standard	Blanks
	Samples		Core	Rejects	Duplicates	Reference	
			Duplicates	Duplicates		Material	
2017	2209	Au FA450 Multi-element MA300	62	59	69	247	62
2016	311	Au GE-FAA313 Multi-element GE-ICP14B	6	8	10	32	7

12.4.1 Assessment of Precision Error

Precision error, or repeatability, is a measure of how close the sample values are to one another and is assessed using duplicate samples. Duplicates in this case are samples of the same material assayed at the same laboratory, using the same procedure, and ideally analyzed in the same batch. There are three main sources of precision error that are introduced in duplicate samples: 1) sample heterogeneity produced in the field sampling, 2) sample preparation at the laboratory, and 3) analytical and instrumental errors. Field (quarter core) duplicates, coarse rejects duplicates and pulp duplicates are used to assess the impact of the various sample preparation stages on error. Typical target precision thresholds for duplicates are:

Pulp duplicate duplicates having average coefficient of variance <0.1

Coarse reject duplicates having average coefficient of variance < 0.2

Field (quarter core) duplicates having average coefficient of variance < 0.3

Coefficient of variance is the universal measure of relative precision error in geological applications (Stanley and Lawie, 2007) and is calculated as:

 $CV_i = \sigma_i/\mu_i = \text{standard deviation of a sample pair 'i'}$ mean of sample pair 'i'

Average coefficient of variance is calculated using the square root of the mean of the squares (RMS) of the CV of each sample pair:

Average $CV = [average(CV_i^2)]^{1/2}$

The RMS method of calculating average CV is due to the fact that standard deviations are not additive but their squares are additive.

The gold CV for field duplicates is shown in Figure 12-1. This scatter plot shows that the gold grades do not appear to be biased and that there is no bias with respect to the two different labs used for the two drilling programs. Five duplicate samples (yellow diamonds) are approaching the theoretical maximum CV (dashed line = $\sqrt{2}$) and appear to be displaying 'nuggety' beahvior. Also shown, is the average coefficient of variance (solid line = 0.3756) as calculated from the RMS method of the individual coefficients of variation. The five 'nuggety' samples have a large weighting in the calculation of the average CV. Removing the 'nugetty' samples and recalculating the average CV gives a value of 0.2308 and would pass the precision error threshold. Increasing the ratio of field duplicate samples to standard reference samples in future programs would increase the confidence in stating that the 'nuggety' effect is not common and can be removed from error analysis.

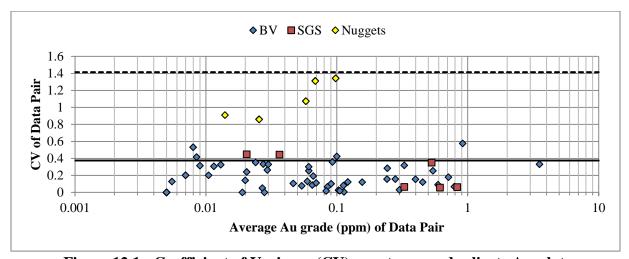


Figure 12.1: Coefficient of Variance (CV) quarter-core duplicate Au-plot.

The gold CV for coarse reject duplicates is shown in Figure 12-2. This scatter plot shows that gold grades might be biased at low grades (<0.03ppm) and that there is no bias with respect to the two different labs used. Also shown, is the average coefficient of variance (solid line = 0.1108) as calculated from the root mean square (RMS) of the individual coefficients of variation.

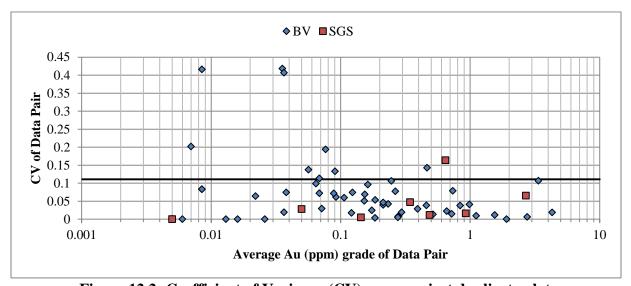


Figure 12.2: Coefficient of Variance (CV) coarse reject duplicate plot.

The gold CV for pulp duplicates is shown in Figure 12-3. This scatter plot shows that gold grades might be biased at low grades (<0.009ppm) and that there is no bias with respect to the two different labs used. Also shown, is the average coefficient of variance (solid line = 0.0746) as calculated from the root mean square (RMS) of the individual coefficients of variation.

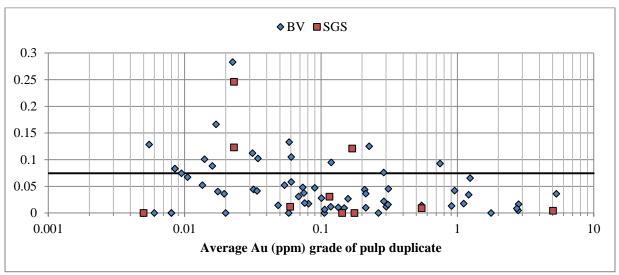


Figure 12.3: Coefficient of Variance (CV) pulp duplicate plot.

To predict the expected measurement error of a given sample at any concentration a linear least square regression method, also known as the Thompson-Howarth error analysis (Thompson and Howarth, 1976), will proved the best estimate of error. The Thompson-Howarth error analysis for Au assays of quarter core duplicates is shown in Figure 12-4. This plot shows the mean and standard deviations of field duplicate pairs. The dashed line represents the theoretical upper limit for the mean and standard deviation statistics of duplicate pairs (slope of dashed line = $\sqrt{2}$). The solid line is the linear regression of all the data points giving a slope of 0.2976. This linear regression is heavily weighted by the single data point above 1ppm. Removing the single data point changes the slope to 0.2122

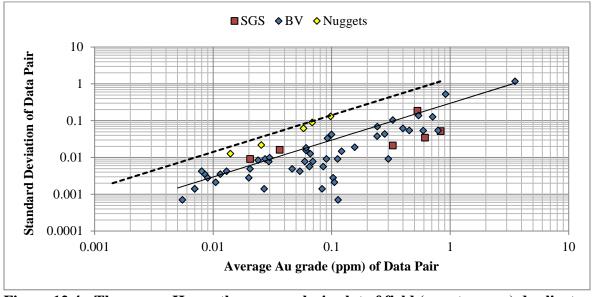


Figure 12.4: Thompson-Howarth error analysis plot of field (quarter core) duplicates.

A summary of the statistics from the precision error analysis is given in Table 12.2

Thompson-Howarth error analysis is based in the assumption that measurement error is normally distributed. As such, samples exhibiting a positively skewed error distribution, such as the produced by a 'nugget effect', have underestimated (biased) measurement errors when using conventional Thompson-Howarth error analysis (Stanley 2006).

Table 12-2 Summary of Duplicate Error Analysis for Au assays

Statistic	Quarter Core	Coarse	Pulp
	Duplicates	Rejects	Duplicates
		Duplicates	
Average CV	0.3756	0.1108	0.0746
Average CV without Nuggets	0.2308	n/a	n/a
Thompson-Howarth regression	0.2976	n/a	n/a
CV*			
Thompson-Howarth regression CV	0.2122	n/a	n/a
without single high value**			

^{*}This estimate of error on Au assays is valid from 0.005ppm to 4.5ppm

12.4.2 Assessment of Accuracy

Accuracy is an assessment of the ability of the lab to return values with an accepted tolerance of expected recommended values (RV) of standard reference materials (SRM) derived from round robin analysis. Banyan Gold used 6 different standard reference materials summarized in table 12-3.

Table 12-3 Standard Reference Material

Reference Material	Recommended	Standard
	Value (RV)	Dev
CDN-ME-1414	0.284 ppm	0.013 ppm
CDN-CM-13	0.740 ppm	0.047 ppm
CDN-GS-1Q	1.24 ppm	0.08 ppm
CDN-GS-1P5D	1.47 ppm	0.15 ppm
CDN-ME-1605	2.85 ppm	0.16 ppm
CDN-GS-5F	5.30ppm	0.36 ppm

^{**} This estimate of error on Au assays is valid from 0.005ppm to 0.9ppm

Table 12-4 Standard Reference Material

Reference	Bureau	# of	Bureau	Lab	Threshold
Material	Veritae	measurement	Veritae	Average	
	Average		Standard	- RV	
			Deviation		
CDN-ME-	0.282 ppm	46	0.012 ppm	0.002	Pass
1414					
CDN-CM-	0.754 ppm	12	0.036 ppm	0.014	Pass
13					
CDN-GS-	1.24 ppm	45	0.034 ppm	0.00	Pass
1Q					
CDN-GS-	1.52 ppm	12	0.09 ppm	0.05	Pass
1P5D					
CDN-ME-	2.82 ppm	56	0.10 ppm	0.03	Pass
1605					
CDN-GS-	5.36 ppm	14	0.23 ppm	0.06	Pass
5F	_				

Table 12-5 Standard Reference Material

Reference	SGS	SGS	
Material	Average	Standard	
		Deviation	
CDN-CM-13	0.766 ppm	0.035 ppm	
CDN-GS-	1.41 ppm	0.042 ppm	
1P5D			
CDN-GS-5F	5.20 ppm	0.190 ppm	

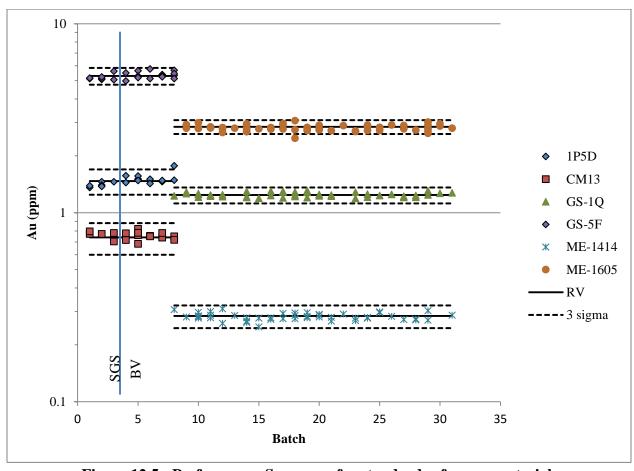


Figure 12.5: Performance Summary for standard reference materials

The authors are confident that the data from drilling on the Hyland Gold Project has been obtained in accordance with contemporary industry standards, and that the data is adequate for the calculation of an inferred mineral resource, in compliance with National Instrument 43-101.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

In 1989, 72 hour bottle roll cyanidation tests were conducted on three assay lab coarse reject composite samples (> 38 um) from the 1988 bulldozer trench sampling program of oxidized mineralization in the Main Zone. The work, conducted by Coastech Research Inc. (Coastech, 1989), reported that 24 hour leach residence time was sufficient for gold recovery of over 95% and concluded that the relatively coarse particle size of the samples indicated that the mineralization is amenable to either vat or heap leaching (Table 13.1). Cyanide and lime consumption were low.

Table 13-1 1989 Bottle Roll Test Results

Sample	Calculated Head Grade Au (g/t)	% Au Recovery	NaCN Consumption (kg/t)	CaO Consumption (kg/t)
O665	6.72	98.0	0.10	1.4
S5739	8.16	98.1	0.12	0.8
S609	3.70	95.1	0.32	1.9

As part of the 1990 RC drill program, there was limited testing of cold cyanide gold extraction carried out on twenty five selected samples (Sax and Carne, 1990). Depth of the samples in the vertical RC holes ranged from 1.5 m to 150 m. Gold content of the samples, determined by fire assay, ranges from 0.3 to 5.1 g/t. Samples were selected to be representative of the oxide (12 samples), transition (6 samples) and sulphide (7 samples) zones as identified by chip logging.

Results are summarized as follows:

- Average gold recovery of all samples by cold cyanide extraction is 70.2%,
- Average gold recovery by cold cyanide extraction from oxide samples is 87.5%,
- Average gold recovery by cold cyanide extraction from transition samples is 87.5%, and
- Average gold recovery by cold cyanide extraction from sulphide samples is 37.7%.

Preliminary microscopy work (Mauser-Steinman, 2011) indicates that gold in unoxidized material is primarily found in fractures and on pyrite grain boundaries and is non-refractory.

Gold recovery is independent of grade in the oxide facies, ranging from 70 to 100%. Recovery is also independent of copper grade in the oxide zone, although this does not necessarily mean that copper is not a cyanide consumer (Sax and Carne, 1990).

2017 Metallurgy Work

Banyan engaged Kappes Cassiday & Associates of Reno, NV ('KCA') to conduct metallurgical bottle roll and column leach test work on samples collected from dedicated metallurgical diamond drill holes; HY17-073, HY17-074 as well as one bulk composite sample towards determination of gold leach recoveries that may be obtainable using heap leach methods. Average gold recoveries from the three column leach tests were 86% (full details below) on 12.5millimeter crushed material; tests were conducted over a 58 day period. Importantly, the test work also demonstrated strong leaching kinetics with a range of 73-87% of the ultimate recovery occurring within the first week of leaching.

Table 13-2 2017 Metallurgy Results

Description	Crush Size (mm)	Avg. Head Assay (gms Au/MT)	Extracted % Au after 58 Days	% Au Extracted Recovered after 7 days
HY-17-073M - Oxide	12.5	1.468	91%	87%
HY-17-074M - Oxide	12.5	0.391	80%	73%
Bulk - Oxide	12.5	1.872	86%	84%
		Average	86%	81%

14.0 MINERAL RESOURCE ESTIMATE

14.1 Introduction

This mineral resource estimate is an update to a 43-101 mineral resource estimate completed in 2012. The first resource estimate completed for the Main Zone was initially commissioned by Argus and completed by GeoVector with a report date of March 1, 2012. Argus reported an Inferred Resource, at a 0.6 g/t gold equivalent ("AuEq") cutoff grade, of 12,503,994 tonnes containing 361,692 ounces gold at 0.9 g/t and 2,248,948 ounces silver at a grade of 5.59 g/t.

Since the original resource estimate for the Main Zone, Banyan Gold has completed addition drilling and trenching in 2016 and 2017. The results of the drilling and trenching by Banyan Gold has been incorporated into the Main Zone database and included in the updated resource. The focus of the 2016/2017 drill and trench programs consisting of infill trenching and infill and step out drilling was to:

- expand the understanding of the mineralizing controls at the Main Zone;
- confirm the previous geological interpretation and test the limits and continuity of the mineralization along strike to the north and south of the known deposit; and
- improve drill spacing to show continuity of mineralization and increase overall confidence in the deposit.

In 2016, the Company completed a LIDAR survey that provided a more accurate topographic surface for the Main Zone deposit. Additionally, utilizing the 2016 LIDAR survey, all historic drill collars were located and surveyed in the field as part of the 2017 program resulting in more accurate controls on all drill holes than was available for previous studies.

Completion of the updated mineral resource involved the assessment of an updated drill hole database, an updated topographic surface, an updated three-dimensional (3D) wireframe grade control model, and available written reports. Armitage recently visited the property on the 19th and 20th of September, 2017. The effective date of the updated mineral resource estimate is March 22nd, 2018.

Inverse Distance Squared ("ID²") restricted to a mineralized domain was used to Interpolate Au, Ag and AuEq grades (g/t) into a block model. Indicated and Inferred mineral resources are reported in the summary tables in Section 14-10. The mineral resource estimate takes into consideration that the Main Zone will be mined by open pit mining methods.

14.2 Drill Hole Database

In order to complete an updated mineral resource estimate for the Main Zone, a database comprising a series of comma delimited spreadsheets containing drill hole and channel information was provided by Banyan Gold. The database included hole and channel location information (NAD83 / UTM Zone 10), survey data, assay data, lithology data and specific gravity data. The data was then imported into GEOVIA GEMS version 6.8.1 software ("GEMS") for wireframe modeling, statistical analysis, block modeling and resource estimation (**Figure 14-1**). After an initial evaluation of the database, a number of drill holes and channels were removed that were located outside the Main Zone area (away from the main mineralized trend). As a result, the current database does not include all drill holes and channels completed on the Project. A summary of the drill hole and

channel database is presented in **Table 14-1**. The complete database includes 104 RC and diamond drill holes (15,379.49 metres), and 30 trenches (6,328.60 metres).

The update Mineral Resource Estimate prepared by SGS is based on data from 71 drill holes (10,564 metres) and 14 trenches (2,014 metres) and includes 4,030 metres of new drill data (21 holes) from 2016 to 2017 and 617 metres of trenching (7 trenches) completed in 2017.

The database was checked for typographical errors in drill hole locations, down hole surveys, lithology, assay values and supporting information on source of assay values. Overlaps and gapping in survey, lithology and assay values in intervals were checked. Gaps in the assay sampling were assigned a grade value of 0.0001 for gold and 0.001 for silver.

In addition to the drill hole and trench database, Banyan Gold provided SGS with a three-dimensional (3D) digital elevation model in DXF format (**Figure 14-2**).

Table 14-1 Main Zone Deposit Area Drill Hole and Channel Database Summary

Drilling		# of Surface	# of Surface	Metres of	# of	Metres	of
Drilling Period	Company	RC Drill	Diamond	Surface	Channel	Channel	
Periou		Holes	Drill Holes	Drilling	s	Sampling	
1987	Hyland JV				14	2,905.7	
1988	Hyland JV				9	2,752.9	
1990	Hyland JV	41		3,656.2			
1995	Hemlo		2	280.10			
2003 – 2004	Stratagold		17	3,632			
2010	Banyan		4	765.04			
2011	Banyan		11	2,064.30			
2015			3	805.44			
2016	Banyan Gold		3	477.62			
2017	Banyan Gold		23	3,698.79	7	670	
Total		41	63	15,379.49	30	6,328.60	

14.3 Mineral Resource Modelling and Wireframing

For the 2017 updated mineral resource estimate for the Main Zone, a single 3D grade controlled wireframe model, representing the main zone mineralization, was constructed by SGS (**Figure 14-3**); (**Figure 14-4**). The 3D grade controlled model was built by visually interpreting mineralized intercepts from cross sections using gold and silver values. Polygons of mineral intersections (snapped to drill holes) were made on each cross section and these were wireframed together to create a continuous resource wireframe model in GEMS.

The polygons of mineral intersections were constructed on 25 m spaced sections (looking north) with a 12.5 m sectional influence. The sections were created perpendicular to the general strike of the mineralization. The grade control model was drawn using an approximate 0.1 to 0.3 g/t cut-off grade based on assay samples. The model was extended approximately 50 metres beyond the last known intersection along strike and 25 - 50 metres down dip. The modeling exercise provided broad controls of the dominant mineralizing direction. The

Main Zone grade controlled wireframe model defines a shallow north plunging $(10^{\circ} - 15^{\circ})$ antiformal structure with shallow to moderate $(20^{\circ} - 35^{\circ})$ west dipping limbs (axial plane). The antiform extends for approximately 900 metres along strike. The lower limb of the antiform extends and to a depth of up to 250 metres. The total volume of the Main Zone grade control model is 7,276,378.4 m³.

Figure 14-1 Isometric View Looking Northeast Showing the Distribution of all Surface Drill Holes and Channels Completed in the Main Zone Deposit Area (histogram of gold is shown on the drill hole/trench trace)

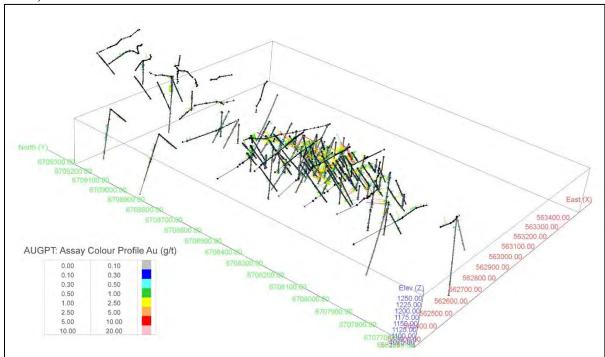


Figure 14-2 Isometric View Looking Northeast Showing 2016 LiDAR Survey Topographic Surface for the Main Zone Area

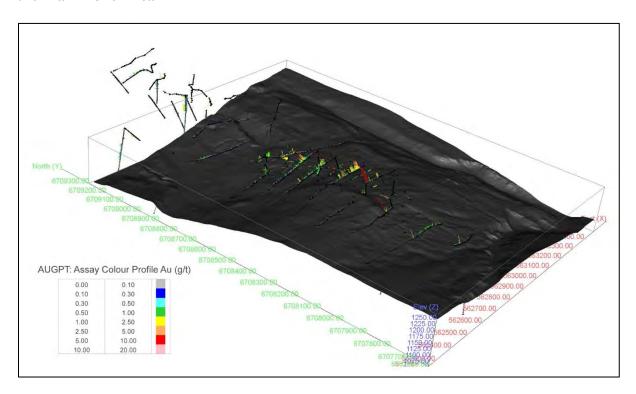
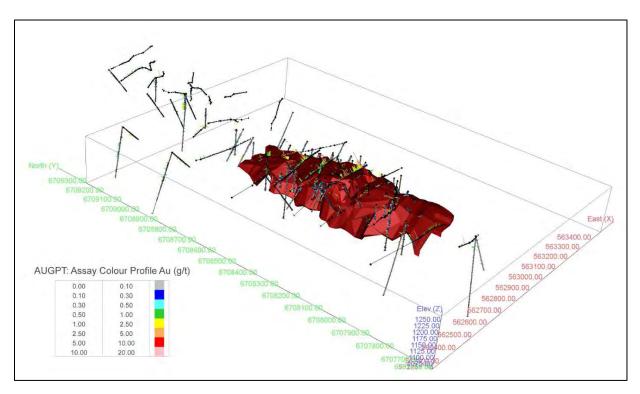



Figure 14-3 Isometric View Looking Northeast Showing 2018 Main Zone 3D Grade Controlled Wireframe Model (clipped to topography)

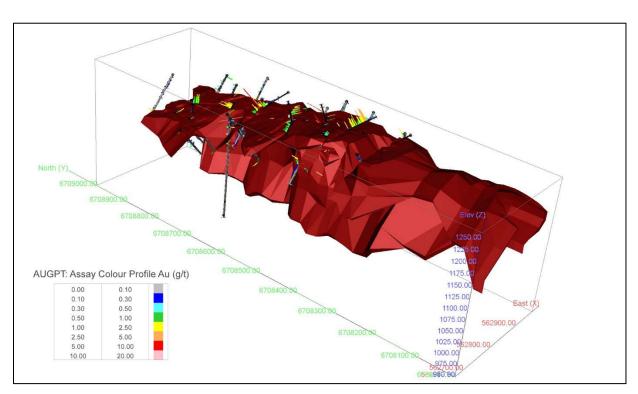


Figure 14-4 Isometric View Looking Northeast Showing the 2018 Main Zone Model and Location of the 2016/2017 Drill holes/Trenches

14.4 Composites

The assay sample database available for the revised resource modelling totalled 2,681 from the 71 drill holes and 14 trenches which define the Main Zone Deposit mineral domain. A statistical analysis of the drill core and channel assay data from within the mineralized domains is presented in (**Table 14-2**). Average width of the drill core sample intervals is 1.50, within a range of 0.20 metres to 13.72 metres; the average width of the channel assay samples is 3.10, within a range of 0.70 to 8.10 metres. To minimize the dilution and over smoothing due to compositing, a composite length of 1.50 metres was chosen as an appropriate composite length for the drill core assay data and a composite length of 2.00 metres was chosen for the channel sample data.

Composites for gold and silver were generated starting from the collar of each hole. Un-assayed intervals were given a value of 0.001 g/t Au and 0.01 g/t for Ag. Composites were then constrained to the Main Zone mineral domain. The constrained composites were extracted to point files for statistical analysis and capping studies.

A total of 2,931 composite sample points occur within the resource wire frame model (**Table 14-3**). These values were used to interpolate grades for gold and silver into resource blocks.

Table 14-2 Statistical Analysis of the Drill Core and Channel Assay Data from Within the Main Zone Deposit Mineral Domain

Variable	Drill Core	Trenches
Total # Assay Samples	2,291	390
Average Sample Length	1.50 m	3.10 m
Minimum and Maximum Length	0.2 to 13.72 m	0.7 to 8.1 m
Total Sample Length	3,442 m	1,202 m
Gold		
Minimum Grade	0.00 g/t	0.00 g/t
Maximum Grade	11.7 g/t	15.0 g/t
Mean	0.65 g/t	0.90 g/t
Median	0.33 g/t	0.51 g/t
Variance	0.95	1.77
Standard Deviation	0.97 g/t	1.33 g/t
Coefficient of variation	1.50	1.48
97.5 Percentile	3.38 g/t	3.81 g/t
Silver		
Minimum Grade	0.05 g/t	0.00 g/t
Maximum Grade	271 g/t	201 g/t
Mean	5.08 g/t	5.26 g/t
Median	1.52 g/t	0.25 g/t
Variance	219	371
Standard Deviation	14.8 g/t	19.3 g/t
Coefficient of variation	2.91	3.66
97.5 Percentile	32.5 g/t	37.2 g/t

Table 14-3 Summary of the Drill Core and Trench Composite Data Constrained by the Main Zone Mineral Resource Models (Drill Hole and Trench Samples)

Variable	Drill Core	Trenches
Total # Assay Samples	2,335	596
Average Sample Length	1.50 m	2.00 m
Gold		
Minimum Grade	0.00 g/t	0.00 g/t
Maximum Grade	8.99 g/t	15.0 g/t
Mean	0.63 g/t	0.91 g/t
Median	0.35 g/t	0.55 g/t
Variance	0.72	1.54
Standard Deviation	0.85 g/t	1.24 g/t
Coefficient of variation	1.35	1.37
97.5 Percentile	2.90 g/t	3.92 g/t
Silver		
Minimum Grade	0.00 g/t	0.00 g/t
Maximum Grade	192 g/t	201 g/t
Mean	4.94 g/t	3.44 g/t
Median	1.79 g/t	0.00 g/t
Variance	144	249
Standard Deviation	12.0 g/t	15.78 g/t
Coefficient of variation	2.43	4.58
97.5 Percentile	27.2 g/t	28.3 g/t

14.5 Grade Capping

A statistical analysis of the composite database within the Main Zone Deposit 3D wireframe model (the "resource" population) was conducted to investigate the presence of high grade outliers which can have a disproportionately large influence on the average grade of a mineral deposit. High grade outliers in the composite data were investigated using statistical data (**Table 14-2**), histogram plots, and cumulative probability plots of the composite data. The statistical analysis was conducted completed using GEMS software

After review it is the Author's opinion that no capping of high grade composites to limit their influence during the grade estimation is necessary. Analysis of the composite data indicates very few outliers within the database. Analysis of the spatial location of these samples and the sample values proximal to them led the Author (Armitage) to believe that the high values were legitimate parts of the population and that the impact of including these high composite values un-capped would be negligible to the overall resource estimate.

14.6 Specific Gravity

Banyan Gold had Bureau Veritas complete specific gravity ("SG") measurements, by pycnometer, on the pulps of 143 core samples submitted for assay analysis from the Main Zone (**Figure 14-5**A); (**Figure 14-6A**). The SG values ranged from 2.65 to 4.60 and averaged 2.97. The average grade of the SG samples is 0.54 g/t Au.

Of the 143 samples, 76 are from within the Main Zone mineralized envelope and 67 are from waste rocks. The SG values of the 76 mineralized samples ranged from 2.65 to 4.60 and averaged 3.03 (**Figure 14-5B**). The average grade of the 76 mineralized samples is 0.95 g/t Au, ranging from 0.01 to 6.97 g/t Au (**Figure 14-6B**).

The SG values of the 67 waste samples ranged from 2.67 to 3.61 and averaged 2.89. The average grade of the 67 waste samples is 0.08 g/t Au, ranging from 0.01 to 0.67 g/t Au.

Based on the data collected for the current Mineral Resource Estimate, an SG of 3.03 is used for the mineralized zone and 2.90 for the waste rocks.

Figure 14-5 Histogram of Specific Gravity A) All Samples and B) Samples from Within the Main Zone Mineralized Domain

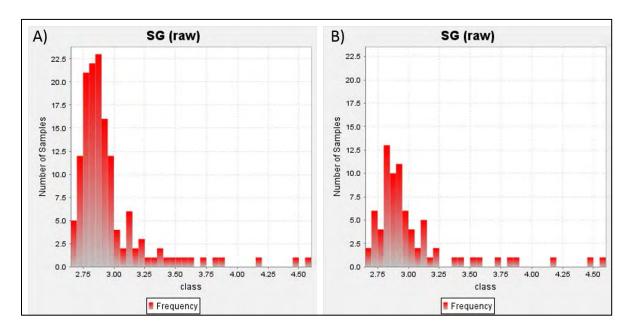
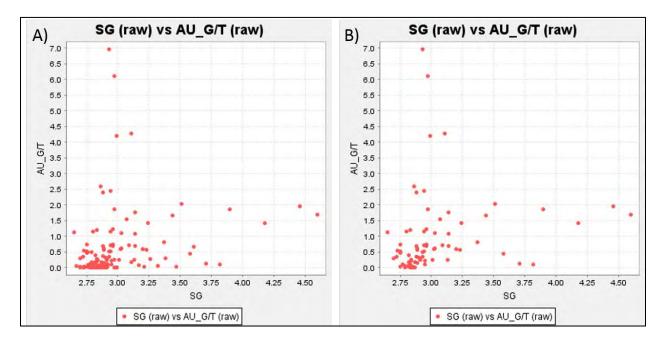



Figure 14-6 Specific Gravity versus Gold Grade for A) All Samples and B) Samples from within the Main Zone Mineralized Domain

14.7 Block Model Parameters

The Main Zone Deposit wire frame was used to constrain composite values chosen for interpolation, and the mineral blocks reported in the estimate of the mineral resource. A block model within NAD83 / UTM Zone 10 (Table 14-4) space (no rotation) (Figure 14-7) with block dimensions of 5 x 5 x 5 metres in the x (east), y (north) and z (level) directions was placed over the grade shells with only that portion of each block inside the shell recorded (as a percentage of the block) as part of the mineral resource estimate (% Block Model). The block size was selected based on borehole spacing, composite assay length, the geometry of the main Zone mineralized model, and the selected starting mining method (Open Pit). At the scale of the Main Zone Deposit this provides a reasonable block size for discerning grade distribution, while still being large enough not to mislead when looking at higher cut-off grade distribution within the model. The model was intersected with a surface topography to exclude blocks, or portions of blocks, that extend above the bedrock surface.

Table 14-4 Deposit Block Model Geometry

Model Name	UH Deposit			
Wiodel Name	X (North)	Y (East)	Z (Level)	
Origin (NAD83 / UTM Zone 10)	562550	6707950	1280	
Extent	100	200	65	
Block Size	5	5	5	
Rotation	0°			

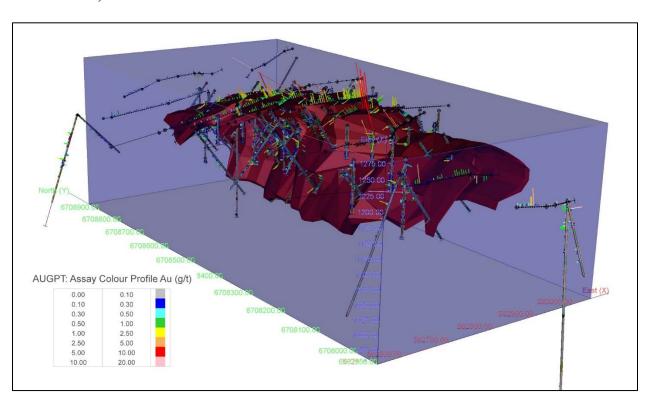


Figure 14-7 Isometric View Looking Northeast Showing the Main Zone Deposit Mineral Resource Block Model, and Traces of the Drill Hole and Trenches

14.8 Grade Interpolation

A 3D semi-variography analysis of mineralized points within the Main Zone domain was completed GEMS software. The analysis did not determine search ellipses of sufficient quality to be used for geostatistical grade estimation (Ordinary Kriging). A search ellipse for the Main Zone domain was interpreted based on drill hole (Data) spacing, and orientation and size of the resource wireframe model (**Table 14-5**). The search ellipse axes are generally oriented to reflect the observed preferential long axis (geological trend) of the Main Zone and the observed trend of the mineralization down dip.

Grades for Au (g/t) and Ag (g/t) were interpolated into blocks by the Inverse Distance Squared (ID²) method. Two passes were used to interpolate grade into all of the blocks in the grade shells (**Table 14-5**). For Pass 1 the search ellipse size (in metres) for the Main Zone domain was set at 45 x 45 x 25 in the X, Y, Z direction; for Pass 2 the search ellipse size for each domain was set at 130 x 130 x 50. Grades were interpolated into blocks using a minimum of 6 and maximum of 12 composites to generate block grades during Pass 1 (maximum of 3 composites per drill hole), and a minimum of 4 and maximum of 12 composites to generate block grades during pass 2 (**Table 14-5**).

The confidence classification of the resource (Indicated and Inferred) is based on an understanding of geological controls of the mineralization, and the drill hole pierce point spacing in the resource area. Blocks were classified as Indicated if they were populated with grade during Pass 1. The Pass 2 search ellipse size was set to assure all remaining blocks within the wireframe were assigned a grade. These blocks were classified as Inferred.

Table 14-5 Grade Interpolation Parameters for the Main Zone Domain

	Main Zone		
Parameter	Pass 1	Pass 2	
	Indicated	Inferred	
Search Type	Ellipsoid		
Principle Azimuth	87°		
Principle Dip	-45°		
Intermediate Azimuth	177°		
Anisotropy X	45	130	
Anisotropy Y	45	130	
Anisotropy Z	25	50	
Min. Samples	6	4	
Max. Samples	12	12	
Max. Samples per Hole/Trenches	2	1	

14.9 Mineral Resource Classification Parameters

The updated Indicated and Inferred mineral resource estimate presented in this Technical Report were prepared and disclosed in compliance with all disclosure requirements for mineral resources set out in the NI 43-101 Standards of Disclosure for Mineral Projects (2011). The classification of the updated mineral resource is consistent with CIM Definition Standards - For Mineral Resources and Mineral Reserves (2014), including the critical requirement that all mineral resources "have reasonable prospects for eventual economic extraction".

A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

The location, quantity, grade or quality, continuity and other geological characteristics of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge, including sampling.

Indicated Mineral Resource

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such as to allow confident interpretation of the geological framework and to reasonably assume the continuity of mineralization. The Qualified Person must recognize the importance of the Indicated Mineral Resource category to the advancement of the feasibility of the project. An Indicated Mineral Resource estimate is of sufficient quality to support a Preliminary Feasibility Study which can serve as the basis for major development decisions.

Inferred Mineral Resource

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Inferred Mineral Resource is based on limited information and sampling gathered through appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and drill holes. Inferred Mineral Resources must not be included in the economic analysis, production schedules, or estimated mine life in publicly disclosed Pre-Feasibility or Feasibility Studies, or in the Life of Mine plans and cash flow models of developed mines. Inferred Mineral Resources can only be used in economic studies as provided under NI 43-101.

There may be circumstances, where appropriate sampling, testing, and other measurements are sufficient to demonstrate data integrity, geological and grade/quality continuity of a Measured or Indicated Mineral Resource, however, quality assurance and quality control, or other information may not meet all industry norms for the disclosure of an Indicated or Measured Mineral Resource. Under these circumstances, it may be reasonable for the Qualified Person to report an Inferred Mineral Resource if the Qualified Person has taken steps to verify the information meets the requirements of an Inferred Mineral Resource.

14.10 Mineral Resource Statement

The general requirement that all mineral resources have "have reasonable prospects for eventual economic extraction" implies that the quantity and grade estimates meet certain economic thresholds and that the mineral resources are reported at an appropriate cut-off grade taking into account extraction scenarios and processing recoveries. In order to meet this requirement, SGS considers that the Main Zone Deposit mineralization is amenable for open pit extraction.

In order to determine the quantities of material offering "reasonable prospects for eventual economic extraction" by an open pit, pit optimization software and reasonable mining assumptions to evaluate the proportions of the block model (Indicated and Inferred blocks) that could be "reasonably expected" to be mined from an open pit were used. The results indicate that the vast majority of the resource (>90% of the Indicated resource and >70% of the total resource) exhibits reasonable prospects for eventual economic extraction, and as a result the mineral resources presented in **Table 14-6** is not restricted within a pit shell (**Figure 14-8** to **Figure 14-10**).

The Main Zone Deposit contains, at a 0.3 g/t AuEq cut-off grade, mineral resources of 216,000 ounces of gold and 1,954,000 ounces of silver (8.6 million tonnes at an average grade of 0.78 g/t Au and 7.04 g/t Ag) in the Indicated category, and 266,000 ounces of gold and 1,845,000 ounces of silver (10.8 million tonnes at an average grade 0.77 g/t Au and 5.32 g/t Ag) in the Inferred category.

The reader is cautioned that the results from the pit optimization are used solely for the purpose of testing the "reasonable prospects for eventual economic extraction" by an open pit and do not represent an attempt to estimate mineral reserves. There are no mineral reserves on the Property. The results are used as a guide to assist in the preparation of a mineral resource statement and to select an appropriate resource reporting cut-off grade.

Table 14-6 Main Zone Deposit 2018 Mineral Resource Estimate, March 22nd, 2018

	In situ Tonnes	Au		Ag		AuEq	
Category		Grade (g/t)	Ozs	Grade (g/t)	Ozs	Grade (g/t)	Ozs
Indicated	8,637,000	0.78	216,000	7.04	1,954,000	0.85	236,000
Inferred	10,784,000	0.77	266,000	5.32	1,845,000	0.83	288,000

- (1) Mineral resources which are not mineral reserves do not have demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimate.
- (2) Mineral resources are reported at a cut-off grade of 0.3 g/t AuEq. AuEq grade is based on \$1,350.00/oz Au, \$17.00/oz Ag and assumes a 100% recovery. The AuEq calculation does not apply any adjustment factors for difference in metallurgical recoveries of gold and silver. This information can only be derived from definitive metallurgical testing which has yet to be completed.

Figure 14-8 Isometric View Looking Northeast of the Main Zone Deposit Mineral Resource Block Grades

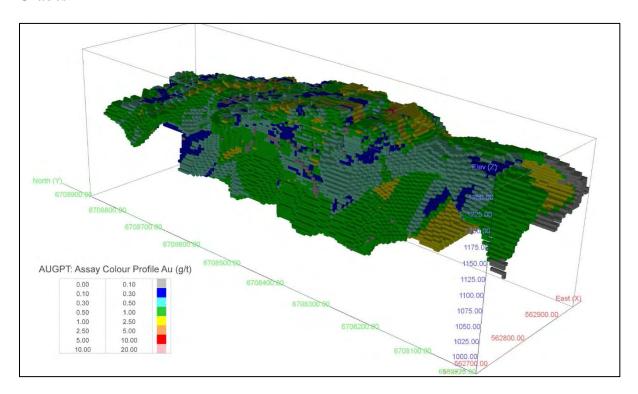
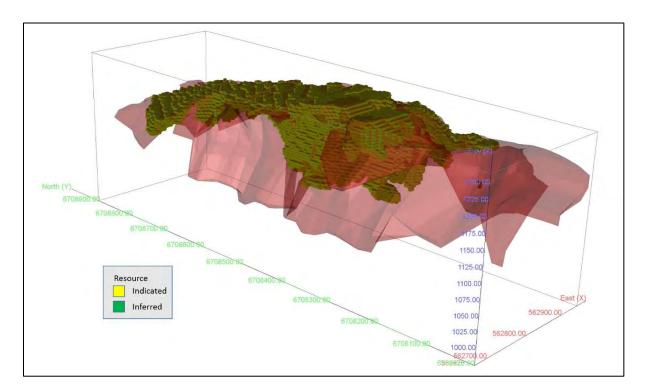



Figure 14-9 Isometric View Looking Northeast showing the distribution of Indicated Mineral Resource Blocks

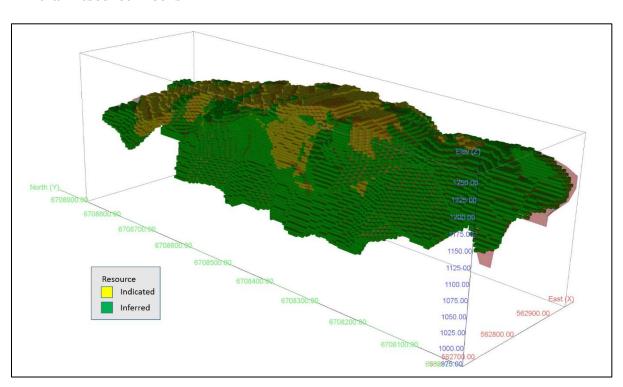


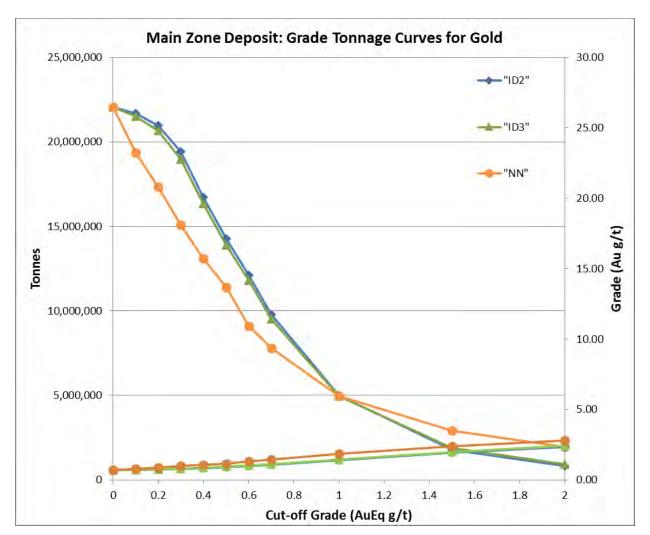
Figure 14-10 Isometric View Looking Northeast showing the distribution of Indicated and Inferred Mineral Resource Blocks

14.11 Model Validation and Sensitivity Analysis

The total volume of the Main Zone Deposit resource blocks in the mineral resource model, at a 0.0 g/t Au cutoff grade value compared well to the total volume of the vein structures with the total volume of the block model being 0.25% lower than the total volume of the Main Zone model (**Table 14-7**). Visual checks of block grades gold against the composite data on vertical section showed good correlation between block grades and drill intersections.

A comparison of the average gold and silver composite grades with the average gold and silver grades of all the blocks in the block model, at a 0.0 g/t AuEq cut-off grade, was completed and is presented in **Table 14-8**. The block model average grade for gold compares well with the average composite grade. The block model average grade for silver is approximately 18% higher than the average composite grade.

For comparison purposes, additional grade models were generated using the inverse distance cubed weighting (ID3) and nearest neighbour (NN) interpolation methods. The results of these models are compared to the ID2 model at various cut-off grades in a series of grade/tonnage graphs shown in **Figure 14-11**. In general the ID2 and ID3 models show similar results and both are more conservative and smoother than the NN model. For models well-constrained by wireframes and well-sampled (close spacing of data), ID2 should yield very similar results to other interpolation methods such ID3 or Ordinary Kriging.


Table 14-7 Comparison of Block Model Volume with the Total Volume of the Main Zone Grade Control Model

Deposit	Total Domain Volume	Block Model Volume	Difference %
Main Zone Deposit	7,276,378	7,258,227	0.25%

Table 14-8 Comparison of Average Composite Grades with Block Model Grades

Deposit	Variable	Total	Au (g/t)	Ag (g/t)
Main Zone Deposit	Composites	2,931	0.69	4.63
	Blocks	66,451	0.70	5.62

Figure 14-11 Comparison of Inverse Distance Cubed (" ${\rm ID}^3$ "), Inverse Distance Squared (" ${\rm ID}^2$ ") & Nearest Neighbour ("NN") Models for the Global Mineral Resource

14.12 Sensitivity to Cut-off Grade

The Main Zone Deposit mineral resource has been estimated at a range of cut-off grades presented in to demonstrate the sensitivity of the resource to cut-off grades. The current mineral resources are reported at a cut-off grade of 0.3 g/t AuEq.

Table 14-9 Main Zone Deposit Mineral Resource at Various Gold Cut-off Grades, March 22, 2018

Cut off Cuodo	In situ	Au		Ag		AuEq			
Cut-off Grade (AuEq g/t)	Tonnes Still	Grade (g/t)	Ozs	Grade (g/t)	Ozs	Grade (g/t)	Ozs		
Indicated									
0.0	10,195,000	0.69	226,000	6.32	2,070,000	0.75	247,000		
0.1	10,063,000	0.70	226,000	6.39	2,067,000	0.76	247,000		
0.2	9,620,000	0.72	224,000	6.59	2,039,000	0.79	244,000		
0.3	8,637,000	0.78	216,000	7.04	1,954,000	0.85	236,000		
0.4	7,326,000	0.86	203,000	7.71	1,816,000	0.94	222,000		
0.5	6,120,000	0.95	187,000	8.36	1,645,000	1.04	204,000		
0.6	5,027,000	1.05	169,000	9.03	1,459,000	1.14	185,000		
0.7	4,092,000	1.15	152,000	9.74	1,282,000	1.26	165,000		
1.0	2,310,000	1.46	108,000	11.45	850,000	1.59	118,000		
1.5	955,000	1.94	60,000	13.91	427,000	2.11	65,000		
2.0	377,000	2.52	31,000	15.95	194,000	2.71	33,000		
Inferred									
0.0	11,798,000	0.72	271,000	5.01	1,899,000	0.78	294,000		
0.1	11,603,000	0.73	271,000	5.07	1,890,000	0.79	294,000		
0.2	11,357,000	0.74	270,000	5.15	1,881,000	0.80	293,000		
0.3	10,784,000	0.77	266,000	5.32	1,845,000	0.83	288,000		
0.4	9,390,000	0.83	251,000	5.61	1,693,000	0.90	272,000		
0.5	8,143,000	0.90	235,000	5.97	1,563,000	0.97	254,000		
0.6	7,084,000	0.95	217,000	6.33	1,442,000	1.03	235,000		
0.7	5,674,000	1.05	191,000	6.67	1,218,000	1.13	206,000		
1.0	2,686,000	1.37	118,000	8.36	722,000	1.47	127,000		
1.5	816,000	1.92	50,000	7.99	210,000	2.02	53,000		
2.0	449,000	2.23	32,000	7.76	112,000	2.33	34,000		

⁽¹⁾ Mineral resources which are not mineral reserves do not have demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimate.

⁽²⁾ Mineral resources are reported at a cut-off grade of 0.3 g/t AuEq. AuEq grade is based on \$1,350.00/oz Au, \$17.00/oz Ag and assumes a 100% recovery. The AuEq calculation does not apply any adjustment factors for difference in metallurgical recoveries of gold and silver. This information can only be derived from definitive metallurgical testing which has yet to be completed.

14.13 Comparison to Previous Mineral Resource Estimate

A comparison of the current Main Zone Deposit updated mineral resource estimate and the 2012 mineral resource estimate completed by GeoVector is presented in **Table 14-10**. The updated mineral resource estimate has resulted in an indicated resource which was not reported in the 2012 estimate. The higher level of confidence in the updated mineral resource estimate is the result of a much improved topography surface and stringent 3D resource wire frame model, and better understanding of the deposit derived from an increase in drilling density.

Table 14-10 Comparison of the 2012 and 2018 Main Zone Deposit Mineral Resource Estimates

Cut-off Grade (AuEq		Tonnes	Au (g/t)		Ag (g/t		AuEq (g/t	
g/t)	g/t)		Grade	Ozs	Grade	Ozs	Grade	Ozs
Indicated								
2018	Mineral	8,637,000	0.78	216,000	7.04	1,954,000	0.85	236,000
Resource		8,037,000	0.70	210,000	7.04	1,734,000	0.03	230,000
2012	Mineral	0	0	0	0	0	0	0
Resource		U	U	U	U	U	U	U
Inferred								
2018	Mineral	10,784,000	0.77	266,000	5.32	1,845,000	0.83	288,000
Resource		10,704,000	0.77	200,000	5.52	1,043,000	0.03	200,000
2012	Mineral	12 503 004	0.90	362,000	5.6	2,249,000	0.99	396,000
Resource		12,503,994	0.90	304,000	3.0	2,249,000	0.77	390,000

⁽¹⁾ Mineral resources are reported at a cut-off grade of 0.6 g/t AuEq for the 2012 estimate and mineral resources are reported at a cut-off grade of 0.3 g/t AuEq for the 2018 estimate.

14.14 Disclosure

All relevant data and information regarding the Project are included in other sections of this Technical Report. There is no other relevant data or information available that is necessary to make the technical report understandable and not misleading.

15.0 MINERAL RESERVE ESTIMATES

There are no mineral reserve estimates stated on this project. This section does not apply to the Technical Report.

16.0 MINING METHODS

This section does not apply to the Technical Report.

17.0 RECOVERY METHODS

This section does not apply to the Technical Report.

18.0 PROJECT INFRASTRUCTURE

This section does not apply to the Technical Report.

19.0 MARKET STUDIES AND CONTRACTS

This section does not apply to the Technical Report.

20.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

This section does not apply to the Technical Report

21.0 CAPITAL AND OPERATING COSTS

This section does not apply to the Technical Report.

22.0 ECONOMIC ANALYSIS

This section does not apply to the Technical Report.

23.0 ADJACENT PROPERTIES

23.1 McMillan Occurrence.

The McMillan occurrence is located immediately west of the Hyland Gold Project. It was first discovered in 1892 and relocated by K. McMillan, who staked it in October 1948. Noranda Exploration Company Ltd. (now Xstrata Nickel Corp.) purchased the property in late 1948 and optioned it in 1949 to New Jersey Zinc Exploration Company Ltd, which hand trenched and drilled 4 diamond drill holes. In 1951 Asarco Exploration Company of Canada Ltd joined the Noranda-New Jersey Zinc joint venture and a new company, Liard River Mining Company Ltd., was formed. Exploration by Liard River between 1951 and 1990 has been episodic, consisting of geochemical surveys, geophysical surveys, bulldozer trenching and diamond drilling in 180 holes totaling about 15,000 m. Other than minor reclamation, little recent work has been carried out.

The McMillan occurrence is manto-like replacement deposit in the Proterozoic to Lower Cambrian Hyland Group at the sheared contact between carbonate rocks and underlying phyllite (Bremner, 1991). Mineralization includes concordant and discordant types. Concordant mineralization mainly consists of layers of massive sphalerite, galena and carbonate (siderite?) with minor sulphosalt minerals. Discordant mineralization is widespread and consists of quartz-siderite veins and veinlets that cut layering and cleavage (Morin, 1981). The deposit has been described as replacement style or manto mineralization developed by hydrothermal fluids ascending along northerly trending fault zones. Unpublished lead isotope studies carried out at the University of British Columbia suggest a poorly constrained Tertiary age of mineralization (Carne, 1985). Recent geological mapping by Pigage et al (2010) locates the McMillan deposit along the same fault that appears to localize mineralization at the Cuz Zone (Figure 7.1)

A historical, unclassified, non-compliant resource of 1.1 million tonnes grading 8.3% zinc, 4.1% lead and 62 g/t silver has been defined for the Main Zone, while the South Zone is listed at 0.4 million tonnes grading 1.7% zinc, 9.3% lead and 214 g/t silver (Yukon MINFILE, 2016).

23.2 Mel Deposit

The Mel deposit is located approximately 12 km east of the Hyland Gold Project (Figure 7.1). Cambrian to Ordovician marine sedimentary rocks and intercalated volcanic rocks host sedimentary-exhalative (SEDEX) zinc-lead-barite mineralization. Stratabound barite-zinc-lead mineralization is laterally extensive within the Cambro-Ordovician Rabbitkettle Fm, but lacks the finely laminated character of typical sedex mineralization; although this may be due to strain-induced recrystallization (Carne, 1976).

The Mel property was first staked by prospectors J. Melynchuk and T. Flint in 1967 and it has subsequently been explored by a number of owners and operators, including Newmont Mining Corporation Ltd., Granby Mining Corp., St. Joseph Exploration Ltd. (later Sulpetro Ltd.), Novamin Resources Ltd., Barytex Resources Ltd., Cominco Ltd., and most recently Kobex Minerals Inc. It is now owned by Silver Range Resources Ltd. and under option to Benz Mining Corp.

Exploration activities on the property have included numerous soil geochemical surveys, geophysical surveys (IP, gravity, VLF and magnetics), trenching, diamond drilling, metallurgical test work and several resource estimations. A 1989 prefeasibility study by Sandwell Swan Wooster Inc. concluded that the Mel Main Zone was potentially viable and provided recommendations for further exploration and development (King and Giroux, 2014). To date, a total of 90 diamond drill holes (16,759 m) have been completed on the property.

The Mel Main Zone has been systematically drill tested but remains open to depth. The Jeri and Jeri North Zones have received limited, reconnaissance level drilling, and the Mel East Zone is untested by drilling.

The main host units are carbonate and clastic sediments that are broadly folded in a north-south trending overturned syncline. This structure has been cut by a number of north and northeast-trending faults. Four, zincrich SEDEX zones have been identified on the Mel property: the Main Mel, Jeri, Jeri North and Mel East Zones.

The Mel Main Zone has had the most drilling and it hosts an inferred resource of 5.38 million tonnes grading 6.45% zinc, 1.85% lead and 44.79% barite (BaSO₄), at a cut-off grade of 5.0% zinc-equivalent. Mineralization at the Mel Main Zone consists of coarse-grained sphalerite and galena disseminated throughout a mixture of mudstone, silica-carbonate and coarsely crystalline barite. Minor amounts of fine-grained, sparsely disseminated pyrite occur locally. The Mel Main Zone is open down dip and has good potential to host a larger zinc-lead resource (King and Giroux, 2014).

24.0 OTHER RELEVANT DATA AND INFORMATION

There is no other relevant data nor additional information or explanation necessary to make this Technical Report comprehensive, understandable and not misleading.

25.0 INTERPRETATION AND CONCLUSIONS

The Hyland Gold Project is an advanced gold prospect located in the Watson Lake Mining District of southeast Yukon, approximately 74 kilometres northeast of the community of Watson Lake. It consists of 927 claims totaling 18,620 hectares and contains two areas of noteworthy gold mineralization, the Main Zone and the Cuz Zone as well as two other areas of exploration interest termed the Camp Zone and the Montrose Ridge Zone. Banyan Gold Corp. has earned a 100% interest in the property subject to various NSR agreements in favour of previous operators.

The Project area has been explored for gold and silver intermittently since the 1970's. Mineral exploration work has included large scale to focused prospecting, hand and mechanized trenching, extensive soil sampling, regional and Property wide stream sediment sampling, multiple geophysical surveys (airborne and ground based), with numerous reverse circulation and diamond drilling campaigns. This work has resulted in the discovery of the Main Zone gold deposit as well as a series of additional mineralized areas.

More recent exploration programs conducted by Argus Metals Corp. and Banyan Gold Corp. from 2010 to 2017 have re-evaluated the geological controls on the known mineralization and resulted in the expansion and definition of the Main Zone gold deposit as well as the discovery of additional bedrock occurrences of gold mineralization at the Cuz and Montrose Ridge Zones. The area of the Hyland Gold Project has been expanded by the staking of additional claims to the south, north, east and west of the original Hyland Gold Project. This staking was done in conjunction with a regional and property wide re-assessment of the available exploration data

The Main Zone at the Hyland Gold Project has been calculated to host at a 0.3 g/t gold equivalent cutoff, 8.6 million tonnes grading 0.85 g/t AuEq for 236,000 AuEq ounces with an Inferred Mineral Resource of 10.8

million tonnes grading 0.83 g/t *AuEq* for **288,000** *AuEq ounces*. The results of diamond drilling to date show that the Main Zone is open to expansion in all directions. Historic exploration on the Main Zone was primarily focused on the near-surface oxide gold resource, while recent drilling campaigns concentrated on delineating the deposit to depth within transition and sulphide mineralization as well as to the east.

In the Camp Zone, oxidized to partially oxidized iron carbonate and/or semi-massive to massive sulphide (mostly pyrrhotite with lesser pyrite and arsenopyrite) bodies occur in limestone peripheral to a major zone of faulting for several hundreds of metres north of the Main Zone. Carbonate-hosted pyrite, arsenopyrite, pyrrhotite, sphalerite, galena, bismuthinite and native copper are also present. These are accompanied by a more than one kilometre long gold and arsenic-in-soil anomaly that has been only partly tested by wide-spaced bulldozer trenching, RC drilling and diamond drilling between 1986 and the present. The mineralogical and metallogenic characteristics of the Camp Zone, coupled with its stratigraphic and structurally lower setting than the Main Zone, suggest that it may represent deeper "feeder style" mineralization.

Gold mineralization in bedrock was discovered at the Cuz Zone by diamond drilling in 2011 about 4 km south of the Main Zone. Drilling, in conjunction with historical soil geochemical survey data, has outlined mineralization over a potential 2 km strike length along a southeasterly trend. The Cuz gold mineralization is distinct from the Main Zone gold in that there is a significantly lower silver component than the Main Zone. The mineralogical and metallogenic characteristics of the Cuz Zone, coupled with its stratigraphic and structurally higher setting than the Main Zone, suggest that it may represent distal or high-level mineralization. It is possible then that significant gold mineralization may exist at deeper stratigraphic levels in the Cuz Zone area.

A significant contribution of the 2013 to 2015 exploration by Banyan Gold Corp. has been the discovery of the Montrose Ridge Zone about 2.5 km south of the Cuz Zone. Follow up of historical steam sediment geochemical anomalies for gold and arsenic have lead to definition of a broad 500 m by 1000 m easterly trending gold-in-soils anomaly (>20ppb Au).

Excavator trenching was carried out in 2015 over the anomalous area. Assay highlights include 6 m of 4.4 g/t Au from 0 to 6m in Trench MT-15-01, including 2 m of 13.1 g/t Au from 4 to 6 m, and 6 m of 1.3 g/t Au from 36 to 42 m. Bedrock was not intersected between 6 and 18 m due to overburden conditions. Chip and channel samples from other nearby trenches returned anomalous, but less significant values of gold and arsenic.

The trench sample results at Montrose Ridge have low silver response (<1 g/t) similar to the Cuz Zone and strengthens the interpretation that both Cuz and Montrose represent a separate or higher level mineralized system than the Hyland Gold Main Zone system, where an approximate 1:4 gold-silver ratio exists.

The major zones of mineralization on the property are aligned along the Quartz Lake Lineament, a greater than 18 km long zone of faulting, folding and brecciation that has been the locus of a variety of styles of gold mineralization. The Main Zone is classified as a sediment-hosted distal disseminated gold deposit, the best known example of which is the Marigold Mine in the Battle Mountain-Eureka Trend of north-central Nevada. Other areas of gold mineralization on the property bear similarities to carbonate replacement or manto styles of mineralization. In aggregate, the vertically and horizontally extensive areas of known gold mineralization, in conjunction with other less well explored areas of strongly anomalous gold and pathfinder element response, are testament to a strong causative hydrothermal system that gave rise to a district-scale area of high exploration potential for a variety of sediment-hosted gold exploration targets types.

Because of extensive vegetation and glacial overburden cover, much of the area of remaining high exploration potential on the Hyland Gold Project has only been tested by wide-spaced soil sampling, if at all.

SGS was contracted by Banyan Gold to complete an updated mineral resource estimate for the Main Zone Gold Deposit and to prepare a technical report written in support of the updated mineral resource estimate.

This mineral resource estimate is an update to a 43-101 mineral resource estimate completed in 2012. Since the original resource estimate for the Main Zone, Banyan Gold has completed addition drilling and trenching in 2016 and 2017. The results of the drilling and trenching by Banyan Gold has been incorporated into the Main Zone database and included in the update resource. The focus of the 2016/2017 drill and trench programs consisting of infill trenching and infill and step out drilling was to:

- expand the understanding of the mineralizing controls at the Main Zone;
- confirm the previous geological interpretation and test the limits and continuity of the mineralization along strike to the north and south of the known deposit; and
- improve drill spacing to show continuity of mineralization and increase overall confidence in the deposit.

In 2016, the Company completed a LIDAR survey that provided a more accurate topographic surface for the Main Zone deposit. Additionally, utilizing the 2016LIDAR survey, all historic drill collars were located and surveyed in the field as part of the 2017 program resulting in more accurate controls on all drill holes than was available for previous studies.

Completion of the updated mineral resource involved the assessment of an updated drill hole database, an updated topographic surface, an updated three-dimensional (3D) wireframe grade control model, and available written reports. Armitage recently visited the property on the 19th and 20th of September, 2017. The effective date of the updated mineral resource estimate is March 22nd, 2018.

The updated resource was released by Banyan Gold on March 22, 2018 (see Banyan Gold's news release dated March 22nd, 2018, which is filed on SEDAR under Banyan Gold's profile). The Main Zone Deposit contains, at a 0.3 g/t AuEq cut-off grade, mineral resources of 216,000 ounces of gold and 1,954,000 ounces of silver (8.6 million tonnes at an average grade of 0.78 g/t Au and 7.04 g/t Ag) in the Indicated category, and 266,000 ounces of gold and 1,845,000 ounces of silver (10.8 million tonnes at an average grade 0.77 g/t Au and 5.32 g/t Ag) in the Inferred category.

The updated Indicated and Inferred mineral resource estimate presented in this Technical Report was prepared and disclosed in compliance with all disclosure requirements for mineral resources set out in the NI 43-101 Standards of Disclosure for Mineral Projects (2011). The classification of the updated mineral resource is consistent with CIM Definition Standards - For Mineral Resources and Mineral Reserves (2014), including the critical requirement that all mineral resources "have reasonable prospects for eventual economic extraction".

In order to complete an updated mineral resource estimate for the Main Zone, a database comprising a series of comma delimited spreadsheets containing drill hole and channel information was provided by Banyan Gold. The database included hole and channel location information (NAD83 / UTM Zone 10), survey data, assay data, lithology data and specific gravity data. The data was then imported into GEMS for wireframe modeling, statistical analysis, block modeling and resource estimation. The update Mineral Resource Estimate prepared by SGS is based on data from 71 drill holes (10,564 metres) and 14 trenches (2,014 metres) and includes 4,030

metres of new drill data (21 holes) from 2016 to 2017 and 617 metres of trenching (7 trenches) completed in 2017.

In addition to the drill hole and trench database, Banyan Gold provided SGS with a three-dimensional (3D) digital elevation model in DXF format.

For the 2018 resource estimate, a grade control wireframe model was built which involved visually interpreting the Main Zone mineralized zones from cross sections using histograms of gold and silver values. Polygons of mineral intersections were made on 25 metre cross sections and these were wireframed together to create a contiguous resource model in GEOVIA GEMS version 6.7.4 software. The modeling exercise provided broad controls of the dominant mineralizing direction. The Main Zone resource model defines a shallow north plunging $(10^{\circ} - 15^{\circ})$ antiformal structure with shallow to moderate $(20^{\circ} - 35^{\circ})$ west dipping limbs (axial plane). The antiformal structure extends for approximately 900 metres along strike. The lower limb of the antiformal structure extends to a depth of up to 250 metres.

The assay sample database available for the revised resource modelling totaled 2,681 from the 71 drill holes and 14 trenches which define the Main Zone Deposit mineral domain. A statistical analysis of the drill core and channel assay data from within the mineralized domains is presented in. Average width of the drill core sample intervals is 1.50, within a range of 0.20 metres to 13.72 metres; the average width of the channel assay samples is 3.10, within a range of 0.70 to 8.10 metres. To minimize the dilution and over smoothing due to compositing, a composite length of 1.50 metres was chosen as an appropriate composite length for the drill core assay data and a composite length of 2.00 metres was chosen for the channel sample data.

A statistical analysis of the composite database within the Main Zone Deposit 3D wireframe model (the "resource" population) was conducted to investigate the presence of high grade outliers which can have a disproportionately large influence on the average grade of a mineral deposit. As a result of the analysis, no capping of high grade composites to limit their influence during the grade estimation was necessary.

Banyan had Bureau Veritas complete specific gravity ("SG") measurements, by pycnometry, on the pulps of 143 core samples submitted for assay analysis from the Main Zone. Of the 143 samples, 76 are from within the Main Zone mineralized envelope and 67 are from waste rocks. The SG values of the 76 mineralized samples ranged from 2.65 to 4.60 and averaged 3.03. The average grade of the 76 mineralized samples is 0.95 g/t Au, ranging from 0.01 to 6.97 g/t Au. The SG values of the 67 waste samples ranged from 2.67 to 3.61 and averaged 2.89. The average grade of the 67 waste samples is 0.08 g/t Au, ranging from 0.01 to 0.67 g/t Au. For the current Mineral Resource Estimate an SG of 3.03 is used for the mineralized zone and 2.90 for the waste rocks.

A block model within NAD83 / UTM Zone 10 (Table 14 4) space (no rotation) (Figure 14 7) with block dimensions of 5 x 5 x 5 metres in the x (east), y (north) and z (level) directions was placed over the grade shells with only that portion of each block inside the shell recorded (as a percentage of the block) as part of the mineral resource estimate (% Block Model). The block size was selected based on borehole spacing, composite assay length, the geometry of the main Zone mineralized model, and the selected starting mining method (Open Pit). At the scale of the Main Zone Deposit this provides a reasonable block size for discerning grade distribution, while still being large enough not to mislead when looking at higher cut-off grade distribution within the model. The model was intersected with a surface topography to exclude blocks, or portions of blocks, that extend above the bedrock surface.

Grades for Au (g/t) and Ag (g/t) were interpolated into blocks by the ID^2 method. Two passes were used to interpolate grade into all of the blocks in the grade shells. For Pass 1 the search ellipse size (in metres) for the Main Zone domain was set at 45 x 45 x 25 in the X, Y, Z direction; for Pass 2 the search ellipse size for each domain was set at 130 x 130 x 50. Grades were interpolated into blocks using a minimum of 6 and maximum of 12 composites to generate block grades during Pass 1 (maximum of 3 composites per drill hole), and a minimum of 4 and maximum of 12 composites to generate block grades during pass 2.

The confidence classification of the resource (Indicated and Inferred) is based on an understanding of geological controls of the mineralization, and the drill hole pierce point spacing in the resource area. Blocks were classified as Indicated if they were populated with grade during Pass 1. The Pass 2 search ellipse size was set to assure all remaining blocks within the wireframe were assigned a grade. These blocks were classified as Inferred.

All geological data used for the resource estimate was reviewed and verified by the Author as being accurate to the extent possible and to the extent possible all geologic information was reviewed and confirmed. The Author feels that the assay sampling and extensive QA/QC sampling of core by Banyan Gold provides adequate and good verification of the data and believe the work to have been done within the guidelines of NI 43-101.

26.0 RECOMMENDATIONS

The Hyland Gold Project covers a large area of high exploration potential. Sediment-hosted gold mineralization is structurally controlled, with gold occurring in a variety of deposit styles along an 18 km long, several hundred metre-wide corridor of faulting, folding and brecciation termed the Quartz Lake Lineament (QLL); especially where the QLL is cross-cut by southeast trending normal faults. Historical exploration at the Main Zone culminated with 2010 and 2011 diamond drilling that produced the first 43-101 compliant resource for the Project and drilling on the Main Zone resumed in 2016 and 2017 to contribute to this updated technical report. The deposit model for the indicated and inferred Resource remains open for expansion by continued drilling in all directions and at depth...

A two-phase exploration program is recommended for the Hyland Gold Project:

Phase I:

30 day field program: Soil geochemical sampling is the easiest and most efficient way to conduct a first pass evaluation of the gold exploration potential. About 75% of the QLL has been covered by at least wide-spaced soil sample surveys and the remaining 25%, especially at the south end of the property, should also have coverage by transect sample lines at 50m sample spacing by 200m line spacing. There is little soil sample coverage of recently identified cross faults as well, and they should be sampled with soil geochemical survey traverses along their extent on the property.

Geochemically anomalous areas identified south of the Main Zone at the Cuz and Montrose Ridge areas should be explored with excavator trenching as terrain permits, as well as any other targets for follow up in other areas of interest that are identified by the soil sample data set.

Attempts at a proper assessment of exploration potential along much of the QLL at lower elevations in the north half of the property have historically been frustrated by thick glacial till cover and frozen ground in forested

areas. Old bulldozer trenches and roads that cut across the QLL structural corridor in the Camp Zone area will have had significant subsequent permafrost retreat and they should be deepened to bedrock with a medium size tracked excavator. The floors of the trenches should be continuously channel sampled if safe to do so. Otherwise, grab samples taken from the excavator bucket can suffice to identify the presence of mineralized sections. A hydraulic post hole auger mounted in place of the bucket on the excavator can be used to sample beyond the conventional reach of the machine in deep overburden areas.

Phase II:

Directed by results of the Phase I program, a 60 day Phase II exploration campaign should have a two-fold objective.

- (1) Infill sampling of anomalous areas resulting from Phase I should optimally target 50 m by 50 m sample spacing. A comprehensive rotary air blast (RAB) or reverse circulation (RC) drill program of 80 holes totaling 8,000 m should be carried out that will focus on refining diamond drill targeting in established areas of gold potential at the Camp, Cuz and Montrose Ridge Zones, as well as any other areas of high exploration interest that were identified by the Phase I work. Recent advancements in drilling technology have developed small track-mounted, self-propelled RAB/RC drills that can complete angle holes through a variety of overburden and groundwater conditions to depths of 100 m at about half the cost of diamond drilling. Fences of 3-100 m deep angle holes at 200 m fence spacing should be drilled across the targeted structures.
- (2) Concurrent with the RAB/RC drill program, diamond drilling of 45 holes totaling 6,000 metres at the Main Zone should proceed with a focus of extending the mineralized envelope to the north and east, and to depth beneath the relatively shallow drilling carried out to date. Follow-up diamond drilling of targets prioritized by RAB/RC drilling should be carried out after assay results are compiled and the Main Zone drilling is completed. A track mounted RC rig with capability to 200m and with centre sample system could be used to drill the upper limb of the Main Zone. With the centre sample system, drill cuttings liberated by the bit travel up directly through holes in the bit face and into the centre tube of the drill rods. This method produces an accurate and uncontaminated sample. RC drilling results can be used in compliant (NI 43-101) resource calculations

The infrastructure to support such a drilling campaign is in place in the form of the exploration camp, heavy equipment on site, the road and trail network, and some of the required consumables. Baseline environmental studies should be undertaken and community consultation should be carried out in conjunction with both phases of work.

Table 26.1 presents a recommended budget to execute the two-phase gold exploration program proposed for the Hyland Gold Project.

Table 26-1 Recommended Hyland Gold Project Exploration Budget

Phase I 30 Day Field Program		
Work/Employee Description	Time and Per Day Unit Cost	Cost
GIS data compilation		\$25,000
Mobilization/Demobilization/Travel Related		\$25,000
Camp Opening		\$5,000
Project Geologist	50 days @ \$770 per day	\$38,500
2 Samplers	30 days @ \$880 per day	\$26,400
Cook/First Aid	30 days @ \$385 per day	\$11,550
Camp Man/ Equipment Operator	30 days @ \$440 per day	\$13,200
ATV Rental (2)	30 days @ \$200 per day	\$6,000
Excavator	300 hours @ \$150 per hour	\$4,000
Geochemical Analysis	2500 @ \$30 per sample	\$45,000
Diesel Fuel	50 barrels @ \$300 per barrel	\$15,000
Fixed Wing Support	20 flights @ \$900 per flight	\$18,000
Camp Costs	150 person days @ \$150/day	\$22,500
Freight/Expediting		\$15,000
Communications		\$5,000
Community Consultation		\$10,000
Baseline Environmental Sampling		\$20,000
Contingency @ 15%		\$51,772
Phase I Total		\$396,922
Phase II 70 Day Field program		
Work/Employee Description	Time and Per Day Unit Cost	Cost
Mobilization/Demobilization/Travel Related		\$80,000
Camp Upgrade		\$8,000
Project Geologist	90 days @ \$770 per day	\$70,230
Junior Geologists (2)	140 days @ \$660 per day	\$27,000
Samplers (2)	140 days @ \$330 per day	\$92,400
Cook/First Aid	70 days @ \$385 per day	\$26,950
Camp Man/ Equipment Operator	70 days @ \$440 per day	\$30,800

Caterpillar	300 hours @ \$150 per hour	\$45,000
Diamond Drilling	6000 m @ \$150 per metre	\$900,000
RAB/RC Drilling	8000 m @ \$75 per metre	\$600,000
Geochemical Analysis	5000 @ \$30 per sample	\$150,000
Fuel	250 barrels @ \$300 per barrel	\$75,000
Fixed Wing Support	40 flights @ \$900 per flight	\$36,000
Camp Costs	930 person days @ \$150 per day	\$139,500
Baseline Environmental Sampling		\$20,000
Freight/Expediting		\$25,000
Communications		\$10,000
Community Consultation		\$10,000
Resource calculation update		\$30,000
Contingency @ 15%		\$58,500
Phase II Total		\$2,732,262
Total Phase I and Phase II		\$3,102,184

27.0 REFERENCES

- Anderson, R.G., 1983; Selwyn plutonic suite and its relationship to tungsten mineralization, southeastern Yukon and District of Mackenzie: Geological Survey of Canada Current Research Paper 83-1B, p. 151-163.
- Anderson, R.G., 1987; Plutonic rocks of the Dawson map area, Yukon Territory: Geological Survey of Canada Current Research Paper 87-1A, p. 689-697.
- Anderson, R.G., 1993; Granitic rocks, in Gordey, S.P., and Anderson, R.G., eds., Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories: Geological Survey of Canada Memoir 428, p. 73-91.
- Archer, A.R. and Carne, J., 1982; Final Report, Quartz Lake Project 1982; internal report for Kidd Creek Mines Ltd.
- Arehart, G. B., Ressel, M., Carne, R. and Muntean, J., 2013; A comparison of Carlin-type deposits in Nevada and Yukon, *in* SEG Special Publication 17, pp. 389-401.
- Armitage, A. and Gray, P.D., 2012a; Technical Report on the Hyland Gold Property in the Yukon Territory, Canada; NI 43-101 Report for Argus Metals Corp., filed on SEDAR under Argus Gold Corp.
- Armitage, A. and Gray, P.D., 2012b; Technical Report on the Hyland Gold Property in the Yukon Territory, Canada; NI 43-101 Report for Banyan Coast Capital, filed on SEDAR under Banyan Gold Corp.
- Arne, D., 2011; Review of Hyland regional stream sediment geochemistry; internal report for Argus Metals Corp.
- ATAC Resources Ltd.; 2016, News release dated May 31, 2016, filed on SEDAR under ATAC Resources Ltd.
- Bidwell, G.E., 1995; Hyland Gold Property, 1995 Exploration Program, Watson Lake Mining District, Quartz Lake Area, Yukon Territory, Diamond Drilling; internal report for Hemlo Gold Mines Ltd.
- Banyan Gold Corp.; 2015, News release, September 17, 2015, filed on SEDAR under Banyan Gold Corp.
- Black, R., 2010; 2010 Geological, Geophysical and Diamond Drilling Report on the Hyland Project; internal report for Argus Metals Corp.
- Bremner, T. and Ouellette, D., 1991; Hyland Gold property, southeastern Yukon. In: Yukon Exploration 1990, Yukon Exploration and Geological Services, Indian & Northern Affairs Canada/Department of Indian & Northern Development: Exploration & Geological Services Division, p. 36.
- Carne, R. C., 1976; Geology of the stratabound barite-lead-zinc deposit on the Mel and Jean claim group, Coal River, Yukon; Dept. of Indian and Northern Affairs, EGS Report 1976-16.
- Carne, R. C. and Cathro, R. J., 1982; Sedimentary exhalative (sedex) zinc-lead-silver deposits, northern Canadian Cordillera; CIM Bulletin, April 1982, Vol. 75, No. 840.
- Carne, R.C., 1985; Geochemical and Geological Report on the Piglet 1-32 Claims; internal report for Archer, Cathro & Associates (1981) Limited.
- Carne, R.C., 2000; Summary of Gold Potential, Hyland Gold Project, Yukon Territory; internal report for Hyland Gold Joint Venture.
- Carne, R.C., 2002; Geological report describing the Hyland Gold property including 2001 geochemical surveys and prospecting: Hyland Gold Joint Venture; Yukon Mining Assessment Report 094296, 58 p.

- Carne, R.C. and Halleran, W.H., 1986; Geochemical Sampling Program, Hyland Gold Property; internal report for Hyland Gold Joint Venture.
- Carne, R.C. and Armitage, A., 2016; Technical Report on the Hyland Gold Property in the Yukon Territory, Canada; NI 43-101 Report for Banyan Gold Corp.
- Coastech Research, Inc., 1989; Hyland Gold Joint Venture cyanidation scoping testwork, Project #89-2099, internal report for Hyland Gold Joint Venture, 14 p.
- Dennett, J.T. and Eaton, W.D., 1987; Report on Soil Geochemical and Bulldozer Trenching Program, Piglet, Quiver and Sow Claims; internal report for Hyland Gold Joint Venture.
- Dennett, J.T. and Eaton, W.D., 1988; Report on Soil Geochemical, Geophysical, Bulldozer Trenching and Diamond Drilling Program conducted for Adrian Resources Ltd., NDU Resources Ltd., and Silverquest Resources Ltd. at Piglet, Quiver, Sow, Boar and Ham claims; internal report for Hyland Gold Joint Venture.
- Dubois, M., 2011; Ground TDEM Survey, Hyland Gold Project, Watson Lake Yukon, Canada; internal report for Argus Metals Corp.
- Franzen, J. P, 1989; Review report on the Hyland Gold property, Watson Lake Mining District, Yukon Territory; internal report for Silverquest Resources Ltd., 7 p.
- Gabrielse, H., 1991; Chapter 17, Structural styles *in* Gabrielse, H., and Yorath, C. J., eds., Geology of the Cordilleran Orogen, *in* Canada, 4, Geological Survey of Canada, p. 571-675.
- Gish, R.F., 2000; Assessment Report describing Hyland Gold Property including 1999 Prospecting and Soil Geochemistry; internal report for Hyland Gold Joint Venture.
- Gordey, S.P. and Anderson, R.G., 1993; Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories, *in* Geological Survey of Canada Memoir 428.
- Gray, P.D., 2014a; 2013 Geochemical report on the Hyland Project; internal report for Banyan Gold Corp.
- Gray, P.D., 2014b; 2014 Geochemical report on the Hyland South Project; internal report for Banyan Gold Corp.
- Gray, P.D., 201; 2015 Trench and Geochemical Report on the Hyland South Project; internal report for Banyan Gold Corp.
- Hart, C.J.R., Baker, T., and Burke, M., 2000; New Exploration Concepts for Country-Rock-Hosted, Intrusion-Related God Systems: Tintina Gold Belt in Yukon, *in* The Tintina Gold Belt: Concepts, Exploration, and Discoveries, BC and Yukon Chamber of Mines Cordilleran Roundup Special Volume 2.
- Hladky, D., 2003; Hyland Project, Assessment Report 2003, StrataGold Corporation; Yukon Mining Assessment Report 094455, 524 p.
- Hladky, D., 2004; Hyland Project 2004, Preliminary Report: StrataGold Corporation; Yukon Mining Assessment Report 094492, 43 p.
- Johnston, M. K. and Ressel, M. W., 2004; Carlin-type and distal disseminated Au-Ag deposits: related distal expressions of Eocene intrusive centers in north-central Nevada, *in* Controversies on the Origin of World Class Gold Deposits, Part 1: Carlin-type deposits in Nevada; SEG Newsletter No. 59, p. 10.
- Jones, M.I., 1997; 1996 Assessment Report, Hyland Property, Geological Mapping, Soil Sampling and Auger Soil Sampling Surveys; internal report for Westmin Resources Limited, Yukon Mining Assessment Report AR 093634.

- Kappes, D., Giroux, G. H., Abdel Hafez, S., McIntyre, R. L. and Carlson, G., 2014; Preliminary Economic Assessment (PEA), NI 43-101 Technical report on the Tiger Gold Project, Yukon Territory, Canada; 277 p., filed on SEDAR under ATAC Resources Ltd.
- King, H.L. and Giroux, G.H., 2014; Technical Report on the Mel Zinc-lead-barite property, Watson Lake Mining District, Yukon, for Silver Range Resources Ltd.; 78 p., filed on SEDAR under Silver Range Resources Ltd.
- Klein, J., 2004; Highland Property, Watson Lake M.D. Yukon Territory, Comments on the Geophysical Data Sets; internal report for StrataGold Corporation.
- Lane, J., Phillips, R. and Carne, R., 2015; (abst.), Recent Carlin-type gold discoveries by ATAC Resources Ltd. on the Rackla Gold Project in central Yukon, *in* New Concepts and Discoveries; proceedings of the 2015 GSN Symposium, Reno NV.
- Lustig, G. N., Tucker, T. L., and Duncan, R. A., 2003; A summary report for the Hyland property in the Watson Lake Mining District Yukon Territory, Canada; StrataGold Corporation internal report, 78 p.
- Mauler-Steinman, A., 2011; Petrography of Twelve Core samples from the Hyland Gold Property, (Yukon) MSC11-03R; internal report by Equity Exploration Inc for Argus Metals Corp.
- Morin, J.A., 1981; The McMillan Deposit a stratabound lead-zinc-silver deposit in sedimentary rocks of Upper Proterozoic age, Yukon; *in* Yukon Geology and Exploration 1979-80, Indian & Northern Affairs Canada, Exploration & Geological Services Division.
- Pawliuk, D. J., 1996; Westmin Resources Limited, McMillan Area, Yukon, Yukon Mining Assessment Report 093568.
- Pigage, L. C., Abbott, J. G., and Roots, C. F., 2011; Bedrock geology of Coal River map area (NTS 95D), Yukon; Yukon Geological Survey, scale 1:250 000.
- Plafker, G., and Berg, H.C., 1994; Overview of the geology and tectonic evolution of Alaska, in Plafker, G., and Berg, H.C., eds., *in* The geology of Alaska: The geology of North America, v. G-1: Geological Society of America, Boulder, Colorado, p. 989-1021.
- Sax, K. and Carne, R.C., 1990; Report on Reverse Circulation Percussion Drilling conducted for Hyland Gold Joint Venture at the Hyland Gold Property; internal report for Hyland Gold Venture.
- Stanley, R.C., 2006. On the special application of Thompson-Howarth error analysis to geochemical variables exhibiting a nugget effect. Geochemistry: Exploration, Environment, Analysis. Vol. 6, pp.357-368
- Stanley, R.C. & Lawie, D. 2007. Average relative error in geochemical determinations: clarification, calculation and a plea for consistency. Geochemistry: Exploration, Environment, Analysis. Vol. 16, pp.265-274
- Sparling J., Whitehead, K., 2007; Hyland Gold Property Summary; internal report for StrataGold Corporation.
- Thiessen, E. J., Gleeson, S. A., Bennett, V. and Creaser, R. A., 2016; The Tiger Deposit: a carbonate-hosted, magmatic-hydrothermal gold deposit, central Yukon, Canada; Economic Geology, vol. 111, pp 421-446.
- Tucker, M. J., 2015; Geology, mineralization and geochronology of the Conrad zone Carlin-type prospect, east-central Yukon, Canada; unpublished M.Sc. Thesis, Vancouver, Canada, University of British Columbia, 235 p.
- Tucker, M. J., Hart, C. J. R. and Carne, R. C., 2013; Geology, alteration, and mineralization of the Carlin-type Conrad Zone, Yukon, *in* Yukon Exploration and Geology, 2012, K. E. MacFarlane, M. G. Nordling, and P. J. Sacks (eds.), Yukon Geological Survey, p. 163-178.

- Tucker, T.L., and Pawliuk, D.J., 1995; 1994 Assessment Report, Hyland Property, Geological Mapping, Lithogeochemical Sampling, Stream Sediment Sampling, Soil Sampling and Airborne Geophysical Surveys; Yukon Mining Assessment Report AR 093308.
- Yukon MINFILE, 2016; digital entry for the McMillan occurrence (95D 005); http://data.geology.gov.yk.ca/Occurrence/12505; viewed June 1, 2016.

CERTIFICATE OF QUALIFIED PERSON

Robert. C. Carne, BSc., MSc., P.Geo. Qualified Person Certificate

To accompany the report titled "TECHNICAL REPORT ON UPDATED MINERAL RESOURCE ESTIMATE FOR THE MAIN ZONE, HYLAND GOLD PROPERTY, WATSON LAKE MINING DISTRICT, SOUTHEAST YUKON, CANADA" dated May 1, 2018 (the "Technical Report") for Banyan Gold Corp.

I Robert C. Carne, P. Geo., of 6392 Neville St., Burnaby, British Columbia, V5E 1A6 do hereby certify that:

- 1. I am a Consulting Geoscientist with Carvest Holdings Ltd., of 6392 Neville St., Burnaby, British Columbia, V5E 1A6;
- 2. I graduated with a Bachelor of Science degree in Geology from the University of British Columbia and a Master of Science degree in Geology from the University of British Columbia in 1979;
- 3. I am a member of the Association of Engineers and Geoscientists of British Columbia, Registered in the Province of British Columbia (APEGBC No. 19868);
- 4. I have practised my profession as a geoscientist for 39 years, working in Yukon, British Columbia, Northwest Territories, Nevada and China. In particular, I have worked as an exploration geologist with focus on sediment-hosted gold deposits, sedimentary exhalative (SEDEX) base metal occurrences, ultramafic-hosted nickel-platinum group element deposits and coal, with over five exploration seasons of direct experience on the Hyland Gold Project, involved with conceiving, managing and implementing all aspects of the Project;
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I co-authored the technical report titled "Technical Report On Updated Mineral Resource Estimate For The Main Zone, Hyland Gold Project, Watson Lake Mining District, Southeast Yukon, Canada" dated May 1, 2018 the "Technical Report" and am responsible for all sections of this report with the exception of Section 14.
- 7. I conducted multiple Property Inspections of the Hyland Gold Project when I participated in and managed exploration programs on the Project in 1984, 1986, 1990 and 2001. I accompanied Paul D. Gray, Vice-President of Exploration, Banyan Gold Corp. on a Property tour and inspection on June 12, 2016 and July 26 and 27, 2017;
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Report, the omission of which would make the Report misleading;

- 9. I am independent of Banyan Gold Corp. as defined by Section 1.5 of NI 43-101.;
- 10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form. As of the date of this Certificate, to the best of my knowledge, information and belief, the Technical Report contains all of the scientific and technical information that is required to be disclosed to make the Technical Report not misleading;
- 11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by the Owners, including electronic publication on their websites accessible by the public.

Dated this 1 Day of May, 2018

R. C. CARNE

BRITISH

COLUMBIA

Robert C. Carne, MSc., P. Geo.

SCIEN

CERTIFICATE OF QUALIFIED PERSON

Allan Armitage, Ph. D., P. Geo., SGS Canada Inc.

To accompany the report titled "TECHNICAL REPORT ON UPDATED MINERAL RESOURCE ESTIMATE FOR THE MAIN ZONE, HYLAND GOLD PROPERTY, WATSON LAKE MINING DISTRICT, SOUTHEAST YUKON, CANADA" dated May 1, 2018 (the "Technical Report") for Banyan Gold Corp.

- I, Allan E. Armitage, Ph. D., P. Geol. of 62 River Front Way, Fredericton, New Brunswick, hereby certify that:
- 1. I am a Senior Resource Geologist with SGS Canada Inc., 10 de la Seigneurie E blvd., Unit 203 Blainville, QC, Canada, J7C 3V5 (www.geostat.com).
- 2. I am a graduate of Acadia University having obtained the degree of Bachelor of Science Honours in Geology in 1989, a graduate of Laurentian University having obtained the degree of Masters of Science in Geology in 1992 and a graduate of the University of Western Ontario having obtained a Doctor of Philosophy in Geology in 1998.
- 3. I have been employed as a geologist for every field season (May October) from 1987 to 1996. I have been continuously employed as a geologist since March of 1997.
- 4. I have been involved in mineral exploration and resource modeling for gold, silver, copper, lead, zinc, nickel, and uranium in Canada, Mexico, Honduras, Chile, Cuba and Peru at the grass roots to advanced exploration stage since 1991, including resource estimation since 2006.
- 5. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta and use the title of Professional Geologist (P.Geol.) (License No. 64456; 1999), I am a member of the Association of Professional Engineers and Geoscientists of British Columbia and use the designation (P.Geo.) (Licence No. 38144; 2012), and I am a member of The Association of Professional Geoscientists of Ontario (APGO) and use the designation (P.Geo.) (Licence No. 2829; 2017),
- 6. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation of my professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person".
- 7. I am responsible for Section 14 of the Technical Report.
- 8. I visited the Hyland Gold Project on the September 19th and 20th of, 2017.
- 9. I have had prior involvement in the Hyland Gold Property. I was an author on the preliminary resource estimate for the Main Zone, dated March 1st, 2012 for Argus Metals Corp.

- 10. I am independent of Banyan Gold Corp. as defined by Section 1.5 of NI 43-101.
- 11. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 12. I have read NI 43-101 and Form 43-101F1 (the "Form"), and the Technical Report has been prepared in compliance with NI 43-101 and the Form.

Dr. A. E. ARMITAGE # 38144

Signed and dated this 1st day of May, 2018 at Fredericton, New Brunswick.

Allan Armitage, Ph. D., P. Geo., SGS Canada Inc.

CERTIFICATE OF QUALIFIED PERSON

Paul D. Gray, BSc. (Honours), P.Geo QP Certificate.

To accompany the report titled "TECHNICAL REPORT ON UPDATED MINERAL RESOURCE ESTIMATE FOR THE MAIN ZONE, HYLAND GOLD PROPERTY, WATSON LAKE MINING DISTRICT, SOUTHEAST YUKON, CANADA" dated May 1, 2018 (the "Technical Report") for Banyan Gold Corp.

I, Paul D. Gray, P. Geo., of 1000-1050 West Pender Street, Vancouver, British Columbia, V6E 3S7 do hereby certify that:

- 1. I am a Consulting Geologist with Paul D. Gray Geological Consultants of 1000-1050 West Pender Street, Vancouver, British Columbia, V6E 3S7
- 2. I graduated with a Bachelor of Science degree in Earth Science from the Dalhousie University in 1997 and with an Honours Bachelor of Science degree in Earth Science from Dalhousie University in 2004.
- 3. I am a member of the Association of Engineers and Geoscientists of British Columbia, Registered in the Province of British Columbia (APEGBC No. 29833).
- 4. I have practiced my profession as a geologist for 22 years, working in British Columbia, the Yukon and Northwest Territories, the United States of America, Central America, South America, and Asia. In particular, I have worked as an exploration geologist with a focus on base metals and precious metals exploration in British Columbia and the Yukon Territory. In specific, I have worked on gold mineralized systems in North, Central and South America with over seven seasons of direct experience with the designing, implementing, managing and controlling all aspects of the Hyland Gold Project.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I co-authored the technical report and am responsible for all sections of this report with the exception of Section 14.
- 7. I have conducted multiple Property visits for protracted periods of time on the Hyland Gold Project from July 2010 September, 2017. I accompanied the co-authors of this report Robert Carne and Allan Armitage on their respective Property tours and inspections.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Report, the omission of which would make the Report misleading.

- 9. I am not independent of Banyan Gold Corp. by virtue of my position as V.P. Exploration of that Company as well as Qualified Person for the Company with respect to the Hyland Gold Project.
- 10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form. As of the date of this Certificate, to the best of my knowledge, information and belief, the Technical Report contains all of the scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by the Owners, including electronic publication on their websites accessible by the public.

Dated this 1st Day of May, 2018

Paul D. Gray, P.Geo.

APPENDIX 1: Hyland Gold Project Tenure Data (downloaded from Yukon Mining Recorder web site on April 25, 2018)

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YA67489	Quartz	CUZ	9	BANYAN GOLD CORP 100%	14/02/2027
YA67490	Quartz	CUZ	10	BANYAN GOLD CORP 100%	14/02/2027
YA67491	Quartz	CUZ	11	BANYAN GOLD CORP 100%	14/02/2027
YA67492	Quartz	CUZ	12	BANYAN GOLD CORP 100%	14/02/2027
YA67493	Quartz	CUZ	13	BANYAN GOLD CORP 100%	14/02/2027
YA67494	Quartz	CUZ	14	BANYAN GOLD CORP 100%	14/02/2027
YA68429	Quartz	QUIVER	1	BANYAN GOLD CORP 100%	14/02/2027
YA68430	Quartz	QUIVER	2	BANYAN GOLD CORP 100%	14/02/2027
YA68439	Quartz	QUIVER	11	BANYAN GOLD CORP 100%	14/02/2027
YA68440	Quartz	QUIVER	12	BANYAN GOLD CORP 100%	14/02/2027
YA68449	Quartz	QUIVER	21	BANYAN GOLD CORP 100%	14/02/2027
YA68450	Quartz	QUIVER	22	BANYAN GOLD CORP 100%	14/02/2027
YA68451	Quartz	QUIVER	23	BANYAN GOLD CORP 100%	14/02/2027
YA68452	Quartz	QUIVER	24	BANYAN GOLD CORP 100%	14/02/2027
YA68709	Quartz	QUIVER	25	BANYAN GOLD CORP 100%	14/02/2027
YA68714	Quartz	QUIVER	30	BANYAN GOLD CORP 100%	14/02/2027
YA68716	Quartz	QUIVER	32	BANYAN GOLD CORP 100%	14/02/2027
YA68718	Quartz	QUIVER	34	BANYAN GOLD CORP 100%	14/02/2027
YA68994	Quartz	CUZ	57	BANYAN GOLD CORP 100%	14/02/2027
YA70902	Quartz	PIGLET	1	BANYAN GOLD CORP 100%	14/02/2027
YA70903	Quartz	PIGLET	2	BANYAN GOLD CORP 100%	14/02/2027
YA70904	Quartz	PIGLET	3	BANYAN GOLD CORP 100%	14/02/2027
YA70905	Quartz	PIGLET	4	BANYAN GOLD CORP 100%	14/02/2027
YA70906	Quartz	PIGLET	5	BANYAN GOLD CORP 100%	14/02/2027
YA70907	Quartz	PIGLET	6	BANYAN GOLD CORP 100%	14/02/2027
YA70908	Quartz	PIGLET	7	BANYAN GOLD CORP 100%	14/02/2027
YA70909	Quartz	PIGLET	8	BANYAN GOLD CORP 100%	14/02/2027
YA70910	Quartz	PIGLET	9	BANYAN GOLD CORP 100%	14/02/2027
YA70911	Quartz	PIGLET	10	BANYAN GOLD CORP 100%	14/02/2027
YA70912	Quartz	PIGLET	11	BANYAN GOLD CORP 100%	14/02/2027
YA70913	Quartz	PIGLET	12	BANYAN GOLD CORP 100%	14/02/2027
YA70914	Quartz	PIGLET	13	BANYAN GOLD CORP 100%	14/02/2027
YA70915	Quartz	PIGLET	14	BANYAN GOLD CORP 100%	14/02/2027
YA70916	Quartz	PIGLET	15	BANYAN GOLD CORP 100%	14/02/2027
YA70917	Quartz	PIGLET	16	BANYAN GOLD CORP 100%	14/02/2027

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YA70918	Quartz	PIGLET	17	BANYAN GOLD CORP 100%	14/02/2027
YA70919	Quartz	PIGLET	18	BANYAN GOLD CORP 100%	14/02/2027
YA70920	Quartz	PIGLET	19	BANYAN GOLD CORP 100%	14/02/2027
YA70921	Quartz	PIGLET	20	BANYAN GOLD CORP 100%	14/02/2027
YA70922	Quartz	PIGLET	21	BANYAN GOLD CORP 100%	14/02/2027
YA70923	Quartz	PIGLET	22	BANYAN GOLD CORP 100%	14/02/2027
YA70924	Quartz	PIGLET	23	BANYAN GOLD CORP 100%	14/02/2027
YA70925	Quartz	PIGLET	24	BANYAN GOLD CORP 100%	14/02/2027
YA70926	Quartz	PIGLET	25	BANYAN GOLD CORP 100%	14/02/2027
YA70927	Quartz	PIGLET	26	BANYAN GOLD CORP 100%	14/02/2027
YA70928	Quartz	PIGLET	27	BANYAN GOLD CORP 100%	14/02/2027
YA70929	Quartz	PIGLET	28	BANYAN GOLD CORP 100%	14/02/2027
YA70930	Quartz	PIGLET	29	BANYAN GOLD CORP 100%	14/02/2027
YA70931	Quartz	PIGLET	30	BANYAN GOLD CORP 100%	14/02/2027
YA70932	Quartz	PIGLET	31	BANYAN GOLD CORP 100%	14/02/2027
YA70933	Quartz	PIGLET	32	BANYAN GOLD CORP 100%	14/02/2027
YB00422	Quartz	SOW	1	BANYAN GOLD CORP 100%	14/02/2027
YB00423	Quartz	SOW	2	BANYAN GOLD CORP 100%	14/02/2027
YB00424	Quartz	SOW	3	BANYAN GOLD CORP 100%	14/02/2027
YB00425	Quartz	SOW	4	BANYAN GOLD CORP 100%	14/02/2027
YB00426	Quartz	SOW	5	BANYAN GOLD CORP 100%	14/02/2027
YB14247	Quartz	HAM	5	BANYAN GOLD CORP 100%	14/02/2027
YB14248	Quartz	HAM	6	BANYAN GOLD CORP 100%	14/02/2027
YB14249	Quartz	HAM	7	BANYAN GOLD CORP 100%	14/02/2027
YB14250	Quartz	HAM	8	BANYAN GOLD CORP 100%	14/02/2027
YB14251	Quartz	HAM	9	BANYAN GOLD CORP 100%	14/02/2027
YB14252	Quartz	BOAR	1	BANYAN GOLD CORP 100%	14/02/2027
YB14253	Quartz	BOAR	2	BANYAN GOLD CORP 100%	14/02/2027
YB14254	Quartz	BOAR	3	BANYAN GOLD CORP 100%	14/02/2027
YB14255	Quartz	BOAR	4	BANYAN GOLD CORP 100%	14/02/2027
YB14256	Quartz	BOAR	5	BANYAN GOLD CORP 100%	14/02/2027
YB14257	Quartz	BOAR	6	BANYAN GOLD CORP 100%	14/02/2027
YB14258	Quartz	BOAR	7	BANYAN GOLD CORP 100%	14/02/2027
YB14259	Quartz	BOAR	8	BANYAN GOLD CORP 100%	14/02/2027
YB14260	Quartz	BOAR	9	BANYAN GOLD CORP 100%	14/02/2027
YB14261	Quartz	BOAR	10	BANYAN GOLD CORP 100%	14/02/2027
YB14262	Quartz	BOAR	11	BANYAN GOLD CORP 100%	14/02/2027
YB14383	Quartz	BOAR	12	BANYAN GOLD CORP 100%	14/02/2027

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YB14384	Quartz	BOAR	13	BANYAN GOLD CORP 100%	14/02/2027
YB14385	Quartz	BOAR	14	BANYAN GOLD CORP 100%	14/02/2027
YB14386	Quartz	BOAR	15	BANYAN GOLD CORP 100%	14/02/2027
YB14387	Quartz	BOAR	16	BANYAN GOLD CORP 100%	14/02/2027
YB14388	Quartz	HAM	1	BANYAN GOLD CORP 100%	14/02/2027
YB14389	Quartz	HAM	2	BANYAN GOLD CORP 100%	14/02/2027
YB14390	Quartz	HAM	3	BANYAN GOLD CORP 100%	14/02/2027
YB14391	Quartz	HAM	4	BANYAN GOLD CORP 100%	14/02/2027
YB14392	Quartz	HAM	10	BANYAN GOLD CORP 100%	14/02/2027
YB14393	Quartz	HAM	11	BANYAN GOLD CORP 100%	14/02/2027
YB15352	Quartz	BOAR	17	BANYAN GOLD CORP 100%	14/02/2027
YB15353	Quartz	BOAR	18	BANYAN GOLD CORP 100%	14/02/2027
YB15354	Quartz	BOAR	19	BANYAN GOLD CORP 100%	14/02/2027
YB15355	Quartz	BOAR	20	BANYAN GOLD CORP 100%	14/02/2027
YB15356	Quartz	BOAR	21	BANYAN GOLD CORP 100%	14/02/2027
YB15357	Quartz	BOAR	22	BANYAN GOLD CORP 100%	14/02/2027
YB15358	Quartz	BOAR	23	BANYAN GOLD CORP 100%	14/02/2027
YB15359	Quartz	BOAR	24	BANYAN GOLD CORP 100%	14/02/2027
YB15360	Quartz	BOAR	25	BANYAN GOLD CORP 100%	14/02/2027
YB15361	Quartz	BOAR	26	BANYAN GOLD CORP 100%	14/02/2027
YB15362	Quartz	BOAR	27	BANYAN GOLD CORP 100%	14/02/2027
YB15363	Quartz	BOAR	28	BANYAN GOLD CORP 100%	14/02/2027
YB49043	Quartz	VER	13	BANYAN GOLD CORP 100%	14/02/2027
YB49045	Quartz	VER	15	BANYAN GOLD CORP 100%	14/02/2027
YB49047	Quartz	VER	17	BANYAN GOLD CORP 100%	14/02/2027
YB49067	Quartz	VER	37	BANYAN GOLD CORP 100%	14/02/2027
YB49068	Quartz	VER	38	BANYAN GOLD CORP 100%	14/02/2027
YB49069	Quartz	VER	39	BANYAN GOLD CORP 100%	14/02/2027
YB49070	Quartz	VER	40	BANYAN GOLD CORP 100%	14/02/2027
YB49071	Quartz	VER	41	BANYAN GOLD CORP 100%	14/02/2027
YB49072	Quartz	VER	42	BANYAN GOLD CORP 100%	14/02/2027
YB49087	Quartz	VER	57	BANYAN GOLD CORP 100%	14/02/2027
YB49088	Quartz	VER	58	BANYAN GOLD CORP 100%	14/02/2027
YB49089	Quartz	VER	59	BANYAN GOLD CORP 100%	14/02/2027
YB49090	Quartz	VER	60	BANYAN GOLD CORP 100%	14/02/2027
YB49091	Quartz	VER	61	BANYAN GOLD CORP 100%	14/02/2027
YB49092	Quartz	VER	62	BANYAN GOLD CORP 100%	14/02/2027
YB49093	Quartz	VER	63	BANYAN GOLD CORP 100%	14/02/2027

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YB49094	Quartz	VER	64	BANYAN GOLD CORP 100%	14/02/2027
YB49095	Quartz	VER	65	BANYAN GOLD CORP 100%	14/02/2027
YB49096	Quartz	VER	66	BANYAN GOLD CORP 100%	14/02/2027
YB49109	Quartz	VER	79	BANYAN GOLD CORP 100%	14/02/2027
YB49110	Quartz	VER	80	BANYAN GOLD CORP 100%	14/02/2027
YB49111	Quartz	VER	81	BANYAN GOLD CORP 100%	14/02/2027
YB49112	Quartz	VER	82	BANYAN GOLD CORP 100%	14/02/2027
YB49113	Quartz	VER	83	BANYAN GOLD CORP 100%	14/02/2027
YB49114	Quartz	VER	84	BANYAN GOLD CORP 100%	14/02/2027
YB49115	Quartz	VER	85	BANYAN GOLD CORP 100%	14/02/2027
YB49116	Quartz	VER	86	BANYAN GOLD CORP 100%	14/02/2027
YB49117	Quartz	VER	87	BANYAN GOLD CORP 100%	14/02/2027
YB49118	Quartz	VER	88	BANYAN GOLD CORP 100%	14/02/2027
YB49119	Quartz	VER	89	BANYAN GOLD CORP 100%	14/02/2027
YB49129	Quartz	VER	99	BANYAN GOLD CORP 100%	14/02/2027
YB49130	Quartz	VER	100	BANYAN GOLD CORP 100%	14/02/2027
YB49131	Quartz	VER	101	BANYAN GOLD CORP 100%	14/02/2027
YB49132	Quartz	VER	102	BANYAN GOLD CORP 100%	14/02/2027
YB49133	Quartz	VER	103	BANYAN GOLD CORP 100%	14/02/2027
YB49134	Quartz	VER	104	BANYAN GOLD CORP 100%	14/02/2027
YB49135	Quartz	VER	105	BANYAN GOLD CORP 100%	14/02/2027
YB49136	Quartz	VER	106	BANYAN GOLD CORP 100%	14/02/2027
YB49137	Quartz	VER	107	BANYAN GOLD CORP 100%	14/02/2027
YB49138	Quartz	VER	108	BANYAN GOLD CORP 100%	14/02/2027
YB49139	Quartz	VER	109	BANYAN GOLD CORP 100%	14/02/2027
YB49140	Quartz	VER	110	BANYAN GOLD CORP 100%	14/02/2027
YB49150	Quartz	VER	120	BANYAN GOLD CORP 100%	14/02/2027
YB49152	Quartz	VER	122	BANYAN GOLD CORP 100%	14/02/2027
YB49153	Quartz	VER	123	BANYAN GOLD CORP 100%	14/02/2027
YB49154	Quartz	VER	124	BANYAN GOLD CORP 100%	14/02/2027
YB49155	Quartz	VER	125	BANYAN GOLD CORP 100%	14/02/2027
YB49156	Quartz	VER	126	BANYAN GOLD CORP 100%	14/02/2027
YB49157	Quartz	VER	126	BANYAN GOLD CORP 100%	14/02/2027
YB49158	Quartz	VER	128	BANYAN GOLD CORP 100%	14/02/2027
YB49159	Quartz	VER	129	BANYAN GOLD CORP 100%	14/02/2027
YB49160	Quartz	VER	130	BANYAN GOLD CORP 100%	14/02/2027
YB49161	Quartz	VER	131	BANYAN GOLD CORP 100%	14/02/2027
YB49162	Quartz	VER	132	BANYAN GOLD CORP 100%	14/02/2027

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YB49163	Quartz	VER	133	BANYAN GOLD CORP 100%	14/02/2027
YB49164	Quartz	VER	134	BANYAN GOLD CORP 100%	14/02/2027
YB49165	Quartz	VER	135	BANYAN GOLD CORP 100%	14/02/2027
YB49166	Quartz	VER	136	BANYAN GOLD CORP 100%	14/02/2027
YB49167	Quartz	VER	137	BANYAN GOLD CORP 100%	14/02/2027
YB49168	Quartz	VER	138	BANYAN GOLD CORP 100%	14/02/2027
YB49177	Quartz	VER	147	BANYAN GOLD CORP 100%	14/02/2027
YB49178	Quartz	VER	148	BANYAN GOLD CORP 100%	14/02/2027
YB49179	Quartz	VER	149	BANYAN GOLD CORP 100%	14/02/2027
YB49180	Quartz	VER	150	BANYAN GOLD CORP 100%	14/02/2027
YB49181	Quartz	VER	151	BANYAN GOLD CORP 100%	14/02/2027
YB49182	Quartz	VER	152	BANYAN GOLD CORP 100%	14/02/2027
YB49183	Quartz	VER	153	BANYAN GOLD CORP 100%	14/02/2027
YB49184	Quartz	VER	154	BANYAN GOLD CORP 100%	14/02/2027
YB49185	Quartz	VER	155	BANYAN GOLD CORP 100%	14/02/2027
YB49186	Quartz	VER	156	BANYAN GOLD CORP 100%	14/02/2027
YB49187	Quartz	VER	157	BANYAN GOLD CORP 100%	14/02/2027
YB49188	Quartz	VER	158	BANYAN GOLD CORP 100%	14/02/2027
YB49189	Quartz	VER	159	BANYAN GOLD CORP 100%	14/02/2027
YB49190	Quartz	VER	160	BANYAN GOLD CORP 100%	14/02/2027
YB49191	Quartz	VER	161	BANYAN GOLD CORP 100%	14/02/2027
YB49192	Quartz	VER	162	BANYAN GOLD CORP 100%	14/02/2027
YB49201	Quartz	VER	171	BANYAN GOLD CORP 100%	14/02/2027
YB49202	Quartz	VER	172	BANYAN GOLD CORP 100%	14/02/2027
YB49203	Quartz	VER	173	BANYAN GOLD CORP 100%	14/02/2027
YB49204	Quartz	VER	174	BANYAN GOLD CORP 100%	14/02/2027
YB49205	Quartz	VER	175	BANYAN GOLD CORP 100%	14/02/2027
YB49206	Quartz	VER	176	BANYAN GOLD CORP 100%	14/02/2027
YB49207	Quartz	VER	177	BANYAN GOLD CORP 100%	14/02/2027
YB49208	Quartz	VER	178	BANYAN GOLD CORP 100%	14/02/2027
YB49209	Quartz	VER	179	BANYAN GOLD CORP 100%	14/02/2027
YB49210	Quartz	VER	180	BANYAN GOLD CORP 100%	14/02/2027
YB49211	Quartz	VER	181	BANYAN GOLD CORP 100%	14/02/2027
YB49212	Quartz	VER	182	BANYAN GOLD CORP 100%	14/02/2027
YB49213	Quartz	VER	183	BANYAN GOLD CORP 100%	14/02/2027
YB49214	Quartz	VER	184	BANYAN GOLD CORP 100%	14/02/2027
YB49215	Quartz	VER	185	BANYAN GOLD CORP 100%	14/02/2027
YB49216	Quartz	VER	186	BANYAN GOLD CORP 100%	14/02/2027

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YB49257	Quartz	VER	227	BANYAN GOLD CORP 100%	14/02/2026
YB49258	Quartz	VER	228	BANYAN GOLD CORP 100%	14/02/2027
YB49259	Quartz	VER	229	BANYAN GOLD CORP 100%	14/02/2026
YB49260	Quartz	VER	230	BANYAN GOLD CORP 100%	14/02/2027
YB49261	Quartz	VER	231	BANYAN GOLD CORP 100%	14/02/2027
YB49262	Quartz	VER	232	BANYAN GOLD CORP 100%	14/02/2027
YB49263	Quartz	VER	233	BANYAN GOLD CORP 100%	14/02/2027
YB49264	Quartz	VER	234	BANYAN GOLD CORP 100%	14/02/2027
YB49265	Quartz	VER	235	BANYAN GOLD CORP 100%	14/02/2027
YB49266	Quartz	VER	236	BANYAN GOLD CORP 100%	14/02/2027
YB49269	Quartz	VER	239	BANYAN GOLD CORP 100%	14/02/2027
YB49270	Quartz	VER	240	BANYAN GOLD CORP 100%	14/02/2027
YB49271	Quartz	VER	241	BANYAN GOLD CORP 100%	14/02/2027
YB49272	Quartz	VER	242	BANYAN GOLD CORP 100%	14/02/2027
YB49273	Quartz	VER	243	BANYAN GOLD CORP 100%	14/02/2027
YB79521	Quartz	HL	37	BANYAN GOLD CORP 100%	14/02/2026
YB79522	Quartz	HL	38	BANYAN GOLD CORP 100%	14/02/2026
YB79523	Quartz	HL	39	BANYAN GOLD CORP 100%	14/02/2026
YB79524	Quartz	HL	40	BANYAN GOLD CORP 100%	14/02/2026
YB79525	Quartz	HL	41	BANYAN GOLD CORP 100%	14/02/2026
YB79526	Quartz	HL	42	BANYAN GOLD CORP 100%	14/02/2026
YB79527	Quartz	HL	43	BANYAN GOLD CORP 100%	14/02/2026
YB79528	Quartz	HL	44	BANYAN GOLD CORP 100%	14/02/2026
YB79529	Quartz	HL	45	BANYAN GOLD CORP 100%	14/02/2026
YB79530	Quartz	HL	46	BANYAN GOLD CORP 100%	14/02/2026
YB79531	Quartz	HL	47	BANYAN GOLD CORP 100%	14/02/2026
YB79532	Quartz	HL	48	BANYAN GOLD CORP 100%	14/02/2026
YB79549	Quartz	HL	65	BANYAN GOLD CORP 100%	14/02/2026
YB79550	Quartz	HL	66	BANYAN GOLD CORP 100%	14/02/2026
YB79551	Quartz	HL	67	BANYAN GOLD CORP 100%	14/02/2026
YB79552	Quartz	HL	68	BANYAN GOLD CORP 100%	14/02/2026
YB79553	Quartz	HL	69	BANYAN GOLD CORP 100%	14/02/2026
YB79554	Quartz	HL	70	BANYAN GOLD CORP 100%	14/02/2026
YB79555	Quartz	HL	71	BANYAN GOLD CORP 100%	14/02/2026
YB79556	Quartz	HL	72	BANYAN GOLD CORP 100%	14/02/2026
YB79557	Quartz	HL	73	BANYAN GOLD CORP 100%	14/02/2026
YB79558	Quartz	HL	74	BANYAN GOLD CORP 100%	14/02/2026
YB79559	Quartz	HL	75	BANYAN GOLD CORP 100%	14/02/2026

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YB79560	Quartz	HL	76	BANYAN GOLD CORP 100%	14/02/2026
YC23462	Quartz	HOG	3	BANYAN GOLD CORP 100%	14/02/2026
YC23463	Quartz	HOG	4	BANYAN GOLD CORP 100%	14/02/2026
YC23464	Quartz	HOG	13	BANYAN GOLD CORP 100%	14/02/2027
YC23465	Quartz	HOG	14	BANYAN GOLD CORP 100%	14/02/2027
YC23466	Quartz	HOG	15	BANYAN GOLD CORP 100%	14/02/2027
YC23467	Quartz	HOG	16	BANYAN GOLD CORP 100%	14/02/2027
YC23468	Quartz	HOG	17	BANYAN GOLD CORP 100%	14/02/2027
YC23469	Quartz	HOG	18	BANYAN GOLD CORP 100%	14/02/2027
YC23470	Quartz	HOG	19	BANYAN GOLD CORP 100%	14/02/2027
YC23471	Quartz	HOG	20	BANYAN GOLD CORP 100%	14/02/2027
YC23472	Quartz	HOG	21	BANYAN GOLD CORP 100%	14/02/2027
YC23473	Quartz	HOG	22	BANYAN GOLD CORP 100%	14/02/2027
YC23474	Quartz	HOG	23	BANYAN GOLD CORP 100%	14/02/2027
YC23475	Quartz	HOG	24	BANYAN GOLD CORP 100%	14/02/2027
YC23476	Quartz	HOG	49	BANYAN GOLD CORP 100%	14/02/2027
YC23477	Quartz	HOG	50	BANYAN GOLD CORP 100%	14/02/2026
YC23478	Quartz	HOG	51	BANYAN GOLD CORP 100%	14/02/2026
YC23479	Quartz	HOG	52	BANYAN GOLD CORP 100%	14/02/2026
YC23480	Quartz	HOG	57	BANYAN GOLD CORP 100%	14/02/2026
YC23481	Quartz	HOG	58	BANYAN GOLD CORP 100%	14/02/2026
YC23482	Quartz	HOG	59	BANYAN GOLD CORP 100%	14/02/2026
YC23483	Quartz	HOG	60	BANYAN GOLD CORP 100%	14/02/2026
YC23484	Quartz	HOG	65	BANYAN GOLD CORP 100%	14/02/2026
YC23485	Quartz	HOG	66	BANYAN GOLD CORP 100%	14/02/2026
YC23486	Quartz	HOG	67	BANYAN GOLD CORP 100%	14/02/2026
YC23487	Quartz	HOG	68	BANYAN GOLD CORP 100%	14/02/2026
YC23488	Quartz	HOG	69	BANYAN GOLD CORP 100%	14/02/2026
YC23489	Quartz	HOG	70	BANYAN GOLD CORP 100%	14/02/2026
YC23490	Quartz	HOG	71	BANYAN GOLD CORP 100%	14/02/2026
YC23491	Quartz	HOG	72	BANYAN GOLD CORP 100%	14/02/2026
YC23492	Quartz	HOG	77	BANYAN GOLD CORP 100%	14/02/2026
YC23493	Quartz	HOG	78	BANYAN GOLD CORP 100%	14/02/2026
YC23494	Quartz	HOG	79	BANYAN GOLD CORP 100%	14/02/2026
YC23495	Quartz	HOG	80	BANYAN GOLD CORP 100%	14/02/2026
YC23496	Quartz	HOG	81	BANYAN GOLD CORP 100%	14/02/2026
YC23497	Quartz	HOG	82	BANYAN GOLD CORP 100%	14/02/2026
YC23498	Quartz	HOG	83	BANYAN GOLD CORP 100%	14/02/2026

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YC23499	Quartz	HOG	84	BANYAN GOLD CORP 100%	14/02/2026
YC23500	Quartz	HOG	85	BANYAN GOLD CORP 100%	14/02/2026
YC24001	Quartz	HOG	86	BANYAN GOLD CORP 100%	14/02/2027
YC24002	Quartz	HOG	87	BANYAN GOLD CORP 100%	14/02/2027
YC24003	Quartz	HOG	88	BANYAN GOLD CORP 100%	14/02/2027
YC24004	Quartz	HOG	89	BANYAN GOLD CORP 100%	14/02/2027
YC24005	Quartz	HOG	90	BANYAN GOLD CORP 100%	14/02/2027
YC24014	Quartz	HOG	99	BANYAN GOLD CORP 100%	14/02/2027
YC24015	Quartz	HOG	100	BANYAN GOLD CORP 100%	14/02/2027
YC24016	Quartz	HOG	101	BANYAN GOLD CORP 100%	14/02/2027
YC24017	Quartz	HOG	102	BANYAN GOLD CORP 100%	14/02/2027
YC24018	Quartz	HOG	103	BANYAN GOLD CORP 100%	14/02/2027
YC24019	Quartz	HOG	104	BANYAN GOLD CORP 100%	14/02/2027
YC24020	Quartz	HOG	105	BANYAN GOLD CORP 100%	14/02/2027
YC24021	Quartz	HOG	106	BANYAN GOLD CORP 100%	14/02/2027
YC24022	Quartz	HOG	107	BANYAN GOLD CORP 100%	14/02/2027
YC24023	Quartz	HOG	108	BANYAN GOLD CORP 100%	14/02/2027
YC24024	Quartz	HOG	109	BANYAN GOLD CORP 100%	14/02/2027
YC24025	Quartz	HOG	110	BANYAN GOLD CORP 100%	14/02/2027
YC24026	Quartz	HOG	111	BANYAN GOLD CORP 100%	14/02/2027
YC24027	Quartz	HOG	112	BANYAN GOLD CORP 100%	14/02/2027
YC24028	Quartz	HOG	113	BANYAN GOLD CORP 100%	14/02/2027
YC24029	Quartz	HOG	114	BANYAN GOLD CORP 100%	14/02/2027
YC24030	Quartz	HOG	115	BANYAN GOLD CORP 100%	14/02/2027
YC24031	Quartz	HOG	116	BANYAN GOLD CORP 100%	14/02/2027
YC24006	Quartz	HOG	91	BANYAN GOLD CORP 100%	14/02/2027
YC24007	Quartz	HOG	92	BANYAN GOLD CORP 100%	14/02/2027
YC24008	Quartz	HOG	93	BANYAN GOLD CORP 100%	14/02/2027
YC24009	Quartz	HOG	94	BANYAN GOLD CORP 100%	14/02/2027
YC24010	Quartz	HOG	95	BANYAN GOLD CORP 100%	14/02/2027
YC24011	Quartz	HOG	96	BANYAN GOLD CORP 100%	14/02/2027
YC24012	Quartz	HOG	97	BANYAN GOLD CORP 100%	14/02/2027
YC24013	Quartz	HOG	98	BANYAN GOLD CORP 100%	14/02/2027
YC24357	Quartz	HOG	73	BANYAN GOLD CORP 100%	14/02/2027
YC24358	Quartz	HOG	74	BANYAN GOLD CORP 100%	14/02/2027
YC24359	Quartz	HOG	75	BANYAN GOLD CORP 100%	14/02/2027
YD113001	Quartz	PORK	1	BANYAN GOLD CORP 100%	11/16/2025
YD113002	Quartz	PORK	2	BANYAN GOLD CORP 100%	11/16/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113003	Quartz	PORK	3	BANYAN GOLD CORP 100%	11/16/2025
YD113004	Quartz	PORK	4	BANYAN GOLD CORP 100%	11/16/2025
YD113005	Quartz	PORK	5	BANYAN GOLD CORP 100%	11/16/2025
YD113006	Quartz	PORK	6	BANYAN GOLD CORP 100%	11/16/2025
YD113007	Quartz	PORK	7	BANYAN GOLD CORP 100%	11/16/2025
YD113008	Quartz	PORK	8	BANYAN GOLD CORP 100%	11/16/2025
YD113009	Quartz	PORK	9	BANYAN GOLD CORP 100%	11/16/2025
YD113010	Quartz	PORK	10	BANYAN GOLD CORP 100%	11/16/2025
YD113011	Quartz	PORK	11	BANYAN GOLD CORP 100%	11/16/2025
YD113012	Quartz	PORK	12	BANYAN GOLD CORP 100%	11/16/2025
YD113013	Quartz	PORK	13	BANYAN GOLD CORP 100%	11/16/2025
YD113014	Quartz	PORK	14	BANYAN GOLD CORP 100%	11/16/2025
YD113015	Quartz	PORK	15	BANYAN GOLD CORP 100%	11/16/2025
YD113016	Quartz	PORK	16	BANYAN GOLD CORP 100%	11/16/2025
YD113017	Quartz	PORK	17	BANYAN GOLD CORP 100%	11/16/2025
YD113018	Quartz	PORK	18	BANYAN GOLD CORP 100%	11/16/2025
YD113019	Quartz	PORK	19	BANYAN GOLD CORP 100%	11/16/2025
YD113020	Quartz	PORK	20	BANYAN GOLD CORP 100%	11/16/2025
YD113021	Quartz	PORK	21	BANYAN GOLD CORP 100%	11/16/2025
YD113022	Quartz	PORK	22	BANYAN GOLD CORP 100%	11/16/2025
YD113023	Quartz	PORK	23	BANYAN GOLD CORP 100%	11/16/2025
YD113024	Quartz	PORK	24	BANYAN GOLD CORP 100%	11/16/2025
YD113025	Quartz	PORK	25	BANYAN GOLD CORP 100%	11/16/2025
YD113026	Quartz	PORK	26	BANYAN GOLD CORP 100%	11/16/2025
YD113027	Quartz	PORK	27	BANYAN GOLD CORP 100%	11/16/2025
YD113028	Quartz	PORK	28	BANYAN GOLD CORP 100%	11/16/2025
YD113029	Quartz	PORK	29	BANYAN GOLD CORP 100%	11/16/2025
YD113030	Quartz	PORK	30	BANYAN GOLD CORP 100%	11/16/2025
YD113031	Quartz	PORK	31	BANYAN GOLD CORP 100%	11/16/2025
YD113032	Quartz	PORK	32	BANYAN GOLD CORP 100%	11/16/2025
YD113033	Quartz	PORK	33	BANYAN GOLD CORP 100%	11/16/2025
YD113034	Quartz	PORK	34	BANYAN GOLD CORP 100%	11/16/2025
YD113035	Quartz	PORK	35	BANYAN GOLD CORP 100%	11/16/2025
YD113036	Quartz	PORK	36	BANYAN GOLD CORP 100%	11/16/2025
YD113037	Quartz	PORK	37	BANYAN GOLD CORP 100%	11/16/2025
YD113038	Quartz	PORK	38	BANYAN GOLD CORP 100%	11/16/2025
YD113039	Quartz	PORK	39	BANYAN GOLD CORP 100%	11/16/2025
YD113040	Quartz	PORK	40	BANYAN GOLD CORP 100%	11/16/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113041	Quartz	PORK	41	BANYAN GOLD CORP 100%	11/16/2025
YD113042	Quartz	PORK	42	BANYAN GOLD CORP 100%	11/16/2025
YD113043	Quartz	PORK	43	BANYAN GOLD CORP 100%	11/16/2025
YD113044	Quartz	PORK	44	BANYAN GOLD CORP 100%	11/16/2025
YD113045	Quartz	PORK	45	BANYAN GOLD CORP 100%	11/16/2025
YD113046	Quartz	PORK	46	BANYAN GOLD CORP 100%	11/16/2025
YD113047	Quartz	PORK	47	BANYAN GOLD CORP 100%	11/16/2025
YD113048	Quartz	PORK	48	BANYAN GOLD CORP 100%	11/16/2025
YD113049	Quartz	PORK	49	BANYAN GOLD CORP 100%	11/16/2025
YD113050	Quartz	PORK	50	BANYAN GOLD CORP 100%	11/16/2025
YD113051	Quartz	PORK	51	BANYAN GOLD CORP 100%	11/16/2025
YD113052	Quartz	PORK	52	BANYAN GOLD CORP 100%	11/16/2025
YD113053	Quartz	PORK	53	BANYAN GOLD CORP 100%	11/16/2025
YD113054	Quartz	PORK	54	BANYAN GOLD CORP 100%	11/19/2025
YD113055	Quartz	PORK	55	BANYAN GOLD CORP 100%	11/19/2025
YD113056	Quartz	PORK	56	BANYAN GOLD CORP 100%	11/19/2025
YD113057	Quartz	PORK	57	BANYAN GOLD CORP 100%	11/19/2025
YD113058	Quartz	PORK	58	BANYAN GOLD CORP 100%	11/19/2025
YD113059	Quartz	PORK	59	BANYAN GOLD CORP 100%	11/19/2025
YD113060	Quartz	PORK	60	BANYAN GOLD CORP 100%	11/19/2025
YD113061	Quartz	PORK	61	BANYAN GOLD CORP 100%	11/19/2025
YD113062	Quartz	PORK	62	BANYAN GOLD CORP 100%	11/19/2025
YD113063	Quartz	PORK	63	BANYAN GOLD CORP 100%	11/19/2025
YD113064	Quartz	PORK	64	BANYAN GOLD CORP 100%	11/19/20125
YD113065	Quartz	PORK	65	BANYAN GOLD CORP 100%	11/19/20125
YD113066	Quartz	PORK	66	BANYAN GOLD CORP 100%	11/19/20125
YD113067	Quartz	PORK	67	BANYAN GOLD CORP 100%	11/19/20125
YD113068	Quartz	PORK	68	BANYAN GOLD CORP 100%	11/19/20125
YD113069	Quartz	PORK	69	BANYAN GOLD CORP 100%	11/19/20125
YD113070	Quartz	PORK	70	BANYAN GOLD CORP 100%	11/19/20125
YD113071	Quartz	PORK	71	BANYAN GOLD CORP 100%	11/19/2025
YD113072	Quartz	PORK	72	BANYAN GOLD CORP 100%	11/19/2025
YD113073	Quartz	PORK	73	BANYAN GOLD CORP 100%	11/19/2052
YD113074	Quartz	PORK	74	BANYAN GOLD CORP 100%	11/19/2025
YD113075	Quartz	PORK	75	BANYAN GOLD CORP 100%	11/19/2025
YD113076	Quartz	PORK	76	BANYAN GOLD CORP 100%	11/19/2025
YD113077	Quartz	PORK	77	BANYAN GOLD CORP 100%	11/19/2025
YD113078	Quartz	PORK	78	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113079	Quartz	PORK	79	BANYAN GOLD CORP 100%	11/19/2025
YD113080	Quartz	PORK	80	BANYAN GOLD CORP 100%	11/19/2025
YD113081	Quartz	PORK	81	BANYAN GOLD CORP 100%	11/19/2025
YD113082	Quartz	PORK	82	BANYAN GOLD CORP 100%	11/19/2025
YD113083	Quartz	PORK	83	BANYAN GOLD CORP 100%	11/19/2025
YD113084	Quartz	PORK	84	BANYAN GOLD CORP 100%	11/19/2025
YD113085	Quartz	PORK	85	BANYAN GOLD CORP 100%	11/19/2025
YD113086	Quartz	PORK	86	BANYAN GOLD CORP 100%	11/19/2025
YD113101	Quartz	PORK	87	BANYAN GOLD CORP 100%	11/19/2025
YD113088	Quartz	PORK	88	BANYAN GOLD CORP 100%	11/19/2025
YD113089	Quartz	PORK	89	BANYAN GOLD CORP 100%	11/19/2025
YD113090	Quartz	PORK	90	BANYAN GOLD CORP 100%	11/19/2025
YD113091	Quartz	PORK	91	BANYAN GOLD CORP 100%	11/19/2025
YD113092	Quartz	PORK	92	BANYAN GOLD CORP 100%	11/19/2025
YD113093	Quartz	PORK	93	BANYAN GOLD CORP 100%	11/19/2025
YD113094	Quartz	PORK	94	BANYAN GOLD CORP 100%	11/19/2025
YD113095	Quartz	PORK	95	BANYAN GOLD CORP 100%	11/19/2025
YD113096	Quartz	PORK	96	BANYAN GOLD CORP 100%	11/19/2025
YD113097	Quartz	PORK	97	BANYAN GOLD CORP 100%	11/19/2025
YD113098	Quartz	PORK	98	BANYAN GOLD CORP 100%	11/19/2025
YD113099	Quartz	PORK	99	BANYAN GOLD CORP 100%	11/19/2025
YD113100	Quartz	PORK	100	BANYAN GOLD CORP 100%	11/19/2025
YD113087	Quartz	PORK	101	BANYAN GOLD CORP 100%	11/19/2025
YD113102	Quartz	PORK	102	BANYAN GOLD CORP 100%	11/19/2025
YD113103	Quartz	PORK	103	BANYAN GOLD CORP 100%	11/19/2025
YD113104	Quartz	PORK	104	BANYAN GOLD CORP 100%	11/19/2025
YD113105	Quartz	PORK	105	BANYAN GOLD CORP 100%	11/19/2025
YD113106	Quartz	PORK	106	BANYAN GOLD CORP 100%	11/19/2025
YD113107	Quartz	PORK	107	BANYAN GOLD CORP 100%	11/19/2025
YD113108	Quartz	PORK	108	BANYAN GOLD CORP 100%	11/19/2025
YD113109	Quartz	PORK	109	BANYAN GOLD CORP 100%	11/19/2025
YD113110	Quartz	PORK	110	BANYAN GOLD CORP 100%	11/19/2025
YD113111	Quartz	PORK	111	BANYAN GOLD CORP 100%	11/19/2025
YD113112	Quartz	PORK	112	BANYAN GOLD CORP 100%	11/19/2025
YD113113	Quartz	PORK	113	BANYAN GOLD CORP 100%	11/19/2025
YD113114	Quartz	PORK	114	BANYAN GOLD CORP 100%	11/19/2025
YD113115	Quartz	PORK	115	BANYAN GOLD CORP 100%	11/19/2025
YD113116	Quartz	PORK	116	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113117	Ouartz	PORK	117	BANYAN GOLD CORP 100%	11/19/2025
YD113118	Quartz	PORK	118	BANYAN GOLD CORP 100%	11/19/2025
YD113119	Quartz	PORK	119	BANYAN GOLD CORP 100%	11/19/2025
YD113120	Ouartz	PORK	120	BANYAN GOLD CORP 100%	11/19/2025
YD113121	Quartz	PORK	121	BANYAN GOLD CORP 100%	11/19/2025
YD113122	Quartz	PORK	122	BANYAN GOLD CORP 100%	11/19/2025
YD113123	Quartz	PORK	123	BANYAN GOLD CORP 100%	11/19/2025
YD113124	Quartz	PORK	124	BANYAN GOLD CORP 100%	11/19/2025
YD113125	Quartz	PORK	125	BANYAN GOLD CORP 100%	11/19/2025
YD113126	Quartz	PORK	126	BANYAN GOLD CORP 100%	11/19/2025
YD113127	Quartz	PORK	127	BANYAN GOLD CORP 100%	11/19/2025
YD113128	Quartz	PORK	128	BANYAN GOLD CORP 100%	11/19/2025
YD113129	Quartz	PORK	129	BANYAN GOLD CORP 100%	11/19/2025
YD113130	Quartz	PORK	130	BANYAN GOLD CORP 100%	11/19/2025
YD113131	Quartz	PORK	131	BANYAN GOLD CORP 100%	11/19/2025
YD113132	Quartz	PORK	132	BANYAN GOLD CORP 100%	11/19/2025
YD113133	Quartz	PORK	133	BANYAN GOLD CORP 100%	11/19/2025
YD113134	Quartz	PORK	134	BANYAN GOLD CORP 100%	11/19/2025
YD113135	Quartz	PORK	135	BANYAN GOLD CORP 100%	11/19/2025
YD113136	Quartz	PORK	136	BANYAN GOLD CORP 100%	11/19/2025
YD113137	Quartz	PORK	137	BANYAN GOLD CORP 100%	11/19/2025
YD113138	Quartz	PORK	138	BANYAN GOLD CORP 100%	11/19/2025
YD113139	Quartz	PORK	139	BANYAN GOLD CORP 100%	11/19/2025
YD113140	Quartz	PORK	140	BANYAN GOLD CORP 100%	11/19/2025
YD113141	Quartz	PORK	141	BANYAN GOLD CORP 100%	11/19/2025
YD113142	Quartz	PORK	142	BANYAN GOLD CORP 100%	11/19/205
YD113143	Quartz	PORK	143	BANYAN GOLD CORP 100%	11/19/2025
YD113144	Quartz	PORK	144	BANYAN GOLD CORP 100%	11/19/2025
YD113145	Quartz	PORK	145	BANYAN GOLD CORP 100%	11/19/2025
YD113146	Quartz	PORK	146	BANYAN GOLD CORP 100%	11/19/2025
YD113147	Quartz	PORK	147	BANYAN GOLD CORP 100%	11/19/2025
YD113148	Quartz	PORK	148	BANYAN GOLD CORP 100%	11/19/2025
YD113149	Quartz	PORK	149	BANYAN GOLD CORP 100%	11/19/2025
YD113150	Quartz	PORK	150	BANYAN GOLD CORP 100%	11/19/2025
YD113151	Quartz	PORK	151	BANYAN GOLD CORP 100%	11/19/2025
YD113152	Quartz	PORK	152	BANYAN GOLD CORP 100%	11/19/2025
YD113152	Quartz	PORK	153	BANYAN GOLD CORP 100%	11/19/2025
YD113152	Quartz	PORK	154	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113154	Quartz	PORK	155	BANYAN GOLD CORP 100%	11/19/2025
YD113155	Quartz	PORK	156	BANYAN GOLD CORP 100%	11/19/2025
YD113156	Quartz	PORK	157	BANYAN GOLD CORP 100%	11/19/2025
YD113157	Quartz	PORK	158	BANYAN GOLD CORP 100%	11/19/2025
YD113158	Quartz	PORK	159	BANYAN GOLD CORP 100%	11/19/2025
YD113159	Quartz	PORK	160	BANYAN GOLD CORP 100%	11/19/2025
YD113160	Quartz	PORK	161	BANYAN GOLD CORP 100%	11/19/2025
YD113161	Quartz	PORK	162	BANYAN GOLD CORP 100%	11/19/2025
YD113162	Quartz	PORK	163	BANYAN GOLD CORP 100%	11/19/2025
YD113163	Quartz	PORK	164	BANYAN GOLD CORP 100%	11/19/2025
YD113165	Quartz	PORK	165	BANYAN GOLD CORP 100%	11/19/2025
YD113166	Quartz	PORK	166	BANYAN GOLD CORP 100%	11/19/2025
YD113167	Quartz	PORK	167	BANYAN GOLD CORP 100%	11/19/2025
YD113168	Quartz	PORK	168	BANYAN GOLD CORP 100%	11/19/2025
YD113169	Quartz	PORK	169	BANYAN GOLD CORP 100%	11/19/2025
YD113170	Quartz	PORK	170	BANYAN GOLD CORP 100%	11/19/2025
YD113171	Quartz	PORK	171	BANYAN GOLD CORP 100%	11/19/2025
YD113172	Quartz	PORK	172	BANYAN GOLD CORP 100%	11/19/2025
YD113173	Quartz	PORK	173	BANYAN GOLD CORP 100%	11/19/2025
YD113174	Quartz	PORK	174	BANYAN GOLD CORP 100%	11/19/2025
YD113175	Quartz	PORK	175	BANYAN GOLD CORP 100%	11/19/2025
YD113176	Quartz	PORK	176	BANYAN GOLD CORP 100%	11/19/2025
YD113177	Quartz	PORK	177	BANYAN GOLD CORP 100%	11/19/2025
YD113178	Quartz	PORK	178	BANYAN GOLD CORP 100%	11/19/2025
YD113179	Quartz	PORK	179	BANYAN GOLD CORP 100%	11/19/2025
YD113180	Quartz	PORK	180	BANYAN GOLD CORP 100%	11/19/2025
YD113181	Quartz	PORK	181	BANYAN GOLD CORP 100%	11/19/2025
YD113182	Quartz	PORK	182	BANYAN GOLD CORP 100%	11/19/2025
YD113183	Quartz	PORK	183	BANYAN GOLD CORP 100%	11/19/2025
YD113184	Quartz	PORK	184	BANYAN GOLD CORP 100%	11/19/2025
YD113185	Quartz	PORK	185	BANYAN GOLD CORP 100%	11/19/2025
YD113186	Quartz	PORK	186	BANYAN GOLD CORP 100%	11/19/2025
YD113187	Quartz	PORK	187	BANYAN GOLD CORP 100%	11/19/2025
YD113188	Quartz	PORK	188	BANYAN GOLD CORP 100%	11/19/2025
YD113189	Quartz	PORK	189	BANYAN GOLD CORP 100%	11/19/2025
YD113190	Quartz	PORK	190	BANYAN GOLD CORP 100%	11/19/2025
YD113191	Quartz	PORK	191	BANYAN GOLD CORP 100%	11/19/2025
YD113192	Quartz	PORK	192	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113193	Quartz	PORK	193	BANYAN GOLD CORP 100%	11/19/2025
YD113194	Quartz	PORK	194	BANYAN GOLD CORP 100%	11/19/2025
YD113195	Quartz	PORK	195	BANYAN GOLD CORP 100%	11/19/2025
YD113196	Quartz	PORK	196	BANYAN GOLD CORP 100%	11/19/2025
YD113197	Quartz	PORK	197	BANYAN GOLD CORP 100%	11/19/2025
YD113198	Quartz	PORK	198	BANYAN GOLD CORP 100%	11/19/2025
YD113199	Quartz	PORK	199	BANYAN GOLD CORP 100%	11/19/2025
YD113200	Quartz	PORK	200	BANYAN GOLD CORP 100%	11/19/2025
YD113201	Quartz	PORK	201	BANYAN GOLD CORP 100%	11/19/2025
YD113202	Quartz	PORK	202	BANYAN GOLD CORP 100%	11/19/2025
YD113203	Quartz	PORK	203	BANYAN GOLD CORP 100%	11/19/2025
YD113204	Quartz	PORK	204	BANYAN GOLD CORP 100%	11/19/2025
YD113205	Quartz	PORK	205	BANYAN GOLD CORP 100%	11/19/2025
YD113206	Quartz	PORK	206	BANYAN GOLD CORP 100%	11/19/2025
YD113207	Quartz	PORK	207	BANYAN GOLD CORP 100%	11/19/2025
YD113208	Quartz	PORK	208	BANYAN GOLD CORP 100%	11/19/2025
YD113209	Quartz	PORK	209	BANYAN GOLD CORP 100%	11/19/2025
YD113210	Quartz	PORK	210	BANYAN GOLD CORP 100%	11/19/2025
YD113211	Quartz	PORK	211	BANYAN GOLD CORP 100%	11/19/2025
YD113212	Quartz	PORK	212	BANYAN GOLD CORP 100%	11/19/2025
YD113213	Quartz	PORK	213	BANYAN GOLD CORP 100%	11/19/2025
YD113214	Quartz	PORK	214	BANYAN GOLD CORP 100%	11/19/2025
YD113215	Quartz	PORK	215	BANYAN GOLD CORP 100%	11/19/2025
YD113216	Quartz	PORK	216	BANYAN GOLD CORP 100%	11/19/2025
YD113217	Quartz	PORK	217	BANYAN GOLD CORP 100%	11/19/2025
YD113218	Quartz	PORK	218	BANYAN GOLD CORP 100%	11/19/2025
YD113219	Quartz	PORK	219	BANYAN GOLD CORP 100%	11/19/2025
YD113220	Quartz	PORK	220	BANYAN GOLD CORP 100%	11/19/2025
YD113221	Quartz	PORK	221	BANYAN GOLD CORP 100%	11/19/2025
YD113222	Quartz	PORK	222	BANYAN GOLD CORP 100%	11/19/2025
YD113223	Quartz	PORK	223	BANYAN GOLD CORP 100%	11/19/2025
YD113224	Quartz	PORK	224	BANYAN GOLD CORP 100%	11/19/2025
YD113225	Quartz	PORK	225	BANYAN GOLD CORP 100%	11/19/2025
YD113226	Quartz	PORK	226	BANYAN GOLD CORP 100%	11/19/2025
YD113227	Quartz	PORK	227	BANYAN GOLD CORP 100%	11/19/2025
YD113228	Quartz	PORK	228	BANYAN GOLD CORP 100%	11/19/2025
YD113229	Quartz	PORK	229	BANYAN GOLD CORP 100%	11/19/2025
YD113230	Quartz	PORK	230	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD113231	Quartz	PORK	231	BANYAN GOLD CORP 100%	11/19/2025
YD113232	Quartz	PORK	232	BANYAN GOLD CORP 100%	11/19/2025
YD113233	Quartz	PORK	233	BANYAN GOLD CORP 100%	11/19/2025
YD113234	Quartz	PORK	234	BANYAN GOLD CORP 100%	11/19/2025
YD113235	Quartz	PORK	235	BANYAN GOLD CORP 100%	11/19/2025
YD113236	Quartz	PORK	236	BANYAN GOLD CORP 100%	11/19/2025
YD113237	Quartz	PORK	237	BANYAN GOLD CORP 100%	11/19/2025
YD113238	Quartz	PORK	238	BANYAN GOLD CORP 100%	11/19/2025
YD113239	Quartz	PORK	239	BANYAN GOLD CORP 100%	11/19/2025
YD113240	Quartz	PORK	240	BANYAN GOLD CORP 100%	11/19/2025
YD113241	Quartz	PORK	241	BANYAN GOLD CORP 100%	11/19/2025
YD113242	Quartz	PORK	242	BANYAN GOLD CORP 100%	11/19/2025
YD113243	Quartz	PORK	243	BANYAN GOLD CORP 100%	11/19/2025
YD113244	Quartz	PORK	244	BANYAN GOLD CORP 100%	11/19/2025
YD113245	Quartz	PORK	245	BANYAN GOLD CORP 100%	11/19/2025
YD113247	Quartz	PORK	246	BANYAN GOLD CORP 100%	11/19/2025
YD113248	Quartz	PORK	247	BANYAN GOLD CORP 100%	11/19/2025
YD115049	Quartz	PORK	248	BANYAN GOLD CORP 100%	11/19/2025
YD115047	Quartz	ROAST	1	BANYAN GOLD CORP 100%	11/19/2025
YD115048	Quartz	ROAST	2	BANYAN GOLD CORP 100%	11/19/2025
YD115049	Quartz	ROAST	3	BANYAN GOLD CORP 100%	11/19/2025
YD115050	Quartz	ROAST	4	BANYAN GOLD CORP 100%	11/19/2025
YD115051	Quartz	ROAST	5	BANYAN GOLD CORP 100%	11/19/2025
YD115052	Quartz	ROAST	6	BANYAN GOLD CORP 100%	11/19/2025
YD115053	Quartz	ROAST	7	BANYAN GOLD CORP 100%	11/19/2025
YD115054	Quartz	ROAST	8	BANYAN GOLD CORP 100%	11/19/2025
YD115055	Quartz	ROAST	9	BANYAN GOLD CORP 100%	11/19/2025
YD115056	Quartz	ROAST	10	BANYAN GOLD CORP 100%	11/19/2025
YD115057	Quartz	ROAST	11	BANYAN GOLD CORP 100%	11/19/2025
YD115058	Quartz	ROAST	12	BANYAN GOLD CORP 100%	11/19/2025
YD115050	Quartz	ROAST	13	BANYAN GOLD CORP 100%	11/19/2025
YD115060	Quartz	ROAST	14	BANYAN GOLD CORP 100%	11/19/2025
YD115061	Quartz	ROAST	15	BANYAN GOLD CORP 100%	11/19/2025
YD115062	Quartz	ROAST	16	BANYAN GOLD CORP 100%	11/19/2025
YD115063	Quartz	ROAST	17	BANYAN GOLD CORP 100%	11/19/2025
YD115064	Quartz	ROAST	18	BANYAN GOLD CORP 100%	11/19/2025
YD115065	Quartz	ROAST	19	BANYAN GOLD CORP 100%	11/19/2025
YD115066	Quartz	ROAST	20	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115067	Quartz	ROAST	21	BANYAN GOLD CORP 100%	11/19/2025
YD115068	Quartz	ROAST	22	BANYAN GOLD CORP 100%	11/19/2025
YD115069	Quartz	ROAST	23	BANYAN GOLD CORP 100%	11/19/2025
YD115070	Quartz	ROAST	24	BANYAN GOLD CORP 100%	11/19/2025
YD115071	Quartz	ROAST	25	BANYAN GOLD CORP 100%	11/19/2025
YD115072	Quartz	ROAST	26	BANYAN GOLD CORP 100%	11/19/2025
YD115073	Quartz	ROAST	27	BANYAN GOLD CORP 100%	11/19/2025
YD115074	Quartz	ROAST	28	BANYAN GOLD CORP 100%	11/19/2025
YD115075	Quartz	ROAST	29	BANYAN GOLD CORP 100%	11/19/2025
YD115076	Quartz	ROAST	30	BANYAN GOLD CORP 100%	11/19/2025
YD115077	Quartz	ROAST	31	BANYAN GOLD CORP 100%	11/19/2025
YD115078	Quartz	ROAST	32	BANYAN GOLD CORP 100%	11/19/2025
YD115079	Quartz	ROAST	33	BANYAN GOLD CORP 100%	11/19/2025
YD115080	Quartz	ROAST	34	BANYAN GOLD CORP 100%	11/19/2025
YD115081	Quartz	ROAST	35	BANYAN GOLD CORP 100%	11/19/2025
YD115082	Quartz	ROAST	36	BANYAN GOLD CORP 100%	11/19/2025
YD115083	Quartz	ROAST	37	BANYAN GOLD CORP 100%	11/19/2025
YD115084	Quartz	ROAST	38	BANYAN GOLD CORP 100%	11/19/2025
YD115085	Quartz	ROAST	39	BANYAN GOLD CORP 100%	11/19/2025
YD115086	Quartz	ROAST	40	BANYAN GOLD CORP 100%	11/19/2025
YD115087	Quartz	ROAST	41	BANYAN GOLD CORP 100%	11/19/2025
YD115088	Quartz	ROAST	42	BANYAN GOLD CORP 100%	11/19/2025
YD115089	Quartz	ROAST	43	BANYAN GOLD CORP 100%	11/19/2025
YD115090	Quartz	ROAST	44	BANYAN GOLD CORP 100%	11/19/2025
YD115091	Quartz	ROAST	45	BANYAN GOLD CORP 100%	11/19/2025
YD115092	Quartz	ROAST	46	BANYAN GOLD CORP 100%	11/19/2025
YD115093	Quartz	ROAST	47	BANYAN GOLD CORP 100%	11/19/2025
YD115094	Quartz	ROAST	48	BANYAN GOLD CORP 100%	11/19/2025
YD115095	Quartz	ROAST	49	BANYAN GOLD CORP 100%	11/19/2025
YD115096	Quartz	ROAST	50	BANYAN GOLD CORP 100%	11/19/2025
YD115103	Quartz	BEAN	1	BANYAN GOLD CORP 100%	11/19/2025
YD115104	Quartz	BEAN	2	BANYAN GOLD CORP 100%	11/19/2025
YD115105	Quartz	BEAN	3	BANYAN GOLD CORP 100%	11/19/2025
YD115106	Quartz	BEAN	4	BANYAN GOLD CORP 100%	11/19/2025
YD115107	Quartz	BEAN	5	BANYAN GOLD CORP 100%	11/19/2025
YD115108	Quartz	BEAN	6	BANYAN GOLD CORP 100%	11/19/2025
YD115109	Quartz	BEAN	7	BANYAN GOLD CORP 100%	11/19/2025
YD115110	Quartz	BEAN	8	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115111	Quartz	BEAN	9	BANYAN GOLD CORP 100%	11/19/2025
YD115112	Quartz	BEAN	10	BANYAN GOLD CORP 100%	11/19/2025
YD115113	Quartz	BEAN	11	BANYAN GOLD CORP 100%	11/19/2025
YD115114	Quartz	BEAN	12	BANYAN GOLD CORP 100%	11/19/2025
YD115115	Quartz	BEAN	13	BANYAN GOLD CORP 100%	11/19/2025
YD115116	Quartz	BEAN	14	BANYAN GOLD CORP 100%	11/19/2025
YD115117	Quartz	BEAN	15	BANYAN GOLD CORP 100%	11/19/2025
YD115118	Quartz	BEAN	16	BANYAN GOLD CORP 100%	11/19/2025
YD115119	Quartz	BEAN	17	BANYAN GOLD CORP 100%	11/19/2025
YD115120	Quartz	BEAN	18	BANYAN GOLD CORP 100%	11/19/2025
YD115121	Quartz	BEAN	19	BANYAN GOLD CORP 100%	11/19/2025
YD115122	Quartz	BEAN	20	BANYAN GOLD CORP 100%	11/19/2025
YD115123	Quartz	BEAN	21	BANYAN GOLD CORP 100%	11/19/2025
YD115124	Quartz	BEAN	22	BANYAN GOLD CORP 100%	11/19/2025
YD115125	Quartz	BEAN	23	BANYAN GOLD CORP 100%	11/19/2025
YD115126	Quartz	BEAN	24	BANYAN GOLD CORP 100%	11/19/2025
YD115127	Quartz	BEAN	25	BANYAN GOLD CORP 100%	11/19/2025
YD115128	Quartz	BEAN	26	BANYAN GOLD CORP 100%	11/19/2025
YD115129	Quartz	BEAN	27	BANYAN GOLD CORP 100%	11/19/2025
YD115130	Quartz	BEAN	28	BANYAN GOLD CORP 100%	11/19/2025
YD115131	Quartz	BEAN	29	BANYAN GOLD CORP 100%	11/19/2025
YD115132	Quartz	BEAN	30	BANYAN GOLD CORP 100%	11/19/2025
YD115133	Quartz	BEAN	31	BANYAN GOLD CORP 100%	11/19/2025
YD115134	Quartz	BEAN	32	BANYAN GOLD CORP 100%	11/19/2025
YD115135	Quartz	BEAN	33	BANYAN GOLD CORP 100%	11/19/2025
YD115136	Quartz	BEAN	34	BANYAN GOLD CORP 100%	11/19/2025
YD115137	Quartz	BEAN	35	BANYAN GOLD CORP 100%	11/19/2025
YD115138	Quartz	BEAN	36	BANYAN GOLD CORP 100%	11/19/2025
YD115139	Quartz	BEAN	37	BANYAN GOLD CORP 100%	11/19/2025
YD115140	Quartz	BEAN	38	BANYAN GOLD CORP 100%	11/19/2025
YD115141	Quartz	BEAN	39	BANYAN GOLD CORP 100%	11/19/2025
YD115142	Quartz	BEAN	40	BANYAN GOLD CORP 100%	11/19/2025
YD115143	Quartz	BEAN	41	BANYAN GOLD CORP 100%	11/19/2025
YD115144	Quartz	BEAN	42	BANYAN GOLD CORP 100%	11/19/2025
YD115145	Quartz	BEAN	43	BANYAN GOLD CORP 100%	11/19/2025
YD115146	Quartz	BEAN	44	BANYAN GOLD CORP 100%	11/19/2025
YD115147	Quartz	BEAN	45	BANYAN GOLD CORP 100%	11/19/2025
YD115148	Quartz	BEAN	46	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115149	Quartz	BEAN	47	BANYAN GOLD CORP 100%	11/19/2025
YD115150	Quartz	BEAN	48	BANYAN GOLD CORP 100%	11/19/2025
YD115151	Quartz	BEAN	49	BANYAN GOLD CORP 100%	11/19/2025
YD115152	Quartz	BEAN	50	BANYAN GOLD CORP 100%	11/19/2025
YD115153	Quartz	BEAN	51	BANYAN GOLD CORP 100%	11/19/2025
YD115154	Quartz	BEAN	52	BANYAN GOLD CORP 100%	11/19/2025
YD115155	Quartz	BEAN	53	BANYAN GOLD CORP 100%	11/19/2025
YD115156	Quartz	BEAN	54	BANYAN GOLD CORP 100%	11/19/2025
YD115157	Quartz	BEAN	55	BANYAN GOLD CORP 100%	11/19/2025
YD115158	Quartz	BEAN	56	BANYAN GOLD CORP 100%	11/19/2025
YD115159	Quartz	BEAN	57	BANYAN GOLD CORP 100%	11/19/2025
YD115160	Quartz	BEAN	58	BANYAN GOLD CORP 100%	11/19/2025
YD115161	Quartz	BEAN	59	BANYAN GOLD CORP 100%	11/19/2025
YD115162	Quartz	BEAN	60	BANYAN GOLD CORP 100%	11/19/2025
YD115163	Quartz	BEAN	61	BANYAN GOLD CORP 100%	11/19/2025
YD115164	Quartz	BEAN	62	BANYAN GOLD CORP 100%	11/19/2025
YD115165	Quartz	BEAN	63	BANYAN GOLD CORP 100%	11/19/2025
YD115166	Quartz	BEAN	64	BANYAN GOLD CORP 100%	11/19/2025
YD115167	Quartz	BEAN	65	BANYAN GOLD CORP 100%	11/19/2025
YD115168	Quartz	BEAN	66	BANYAN GOLD CORP 100%	11/19/2025
YD115169	Quartz	BEAN	67	BANYAN GOLD CORP 100%	11/19/2025
YD115170	Quartz	BEAN	68	BANYAN GOLD CORP 100%	11/19/2025
YD115171	Quartz	BEAN	69	BANYAN GOLD CORP 100%	11/19/2025
YD115172	Quartz	BEAN	70	BANYAN GOLD CORP 100%	11/19/2025
YD115173	Quartz	BEAN	71	BANYAN GOLD CORP 100%	11/19/2025
YD115174	Quartz	BEAN	72	BANYAN GOLD CORP 100%	11/19/2025
YD115175	Quartz	BEAN	73	BANYAN GOLD CORP 100%	11/19/2025
YD115176	Quartz	BEAN	74	BANYAN GOLD CORP 100%	11/19/2025
YD115177	Quartz	BEAN	75	BANYAN GOLD CORP 100%	11/19/2025
YD115178	Quartz	BEAN	76	BANYAN GOLD CORP 100%	11/19/2025
YD115179	Quartz	BEAN	77	BANYAN GOLD CORP 100%	11/19/2025
YD115180	Quartz	BEAN	78	BANYAN GOLD CORP 100%	11/19/2025
YD115181	Quartz	BEAN	79	BANYAN GOLD CORP 100%	11/19/2025
YD115182	Quartz	BEAN	80	BANYAN GOLD CORP 100%	11/19/2025
YD115183	Quartz	BEAN	81	BANYAN GOLD CORP 100%	11/19/2025
YD115184	Quartz	BEAN	82	BANYAN GOLD CORP 100%	11/19/2025
YD115185	Quartz	BEAN	83	BANYAN GOLD CORP 100%	11/19/2025
YD115186	Quartz	BEAN	84	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115187	Quartz	BEAN	85	BANYAN GOLD CORP 100%	11/19/2025
YD115188	Quartz	BEAN	86	BANYAN GOLD CORP 100%	11/19/2025
YD115189	Quartz	BEAN	87	BANYAN GOLD CORP 100%	11/19/2025
YD115190	Quartz	BEAN	88	BANYAN GOLD CORP 100%	11/19/2025
YD115191	Quartz	BEAN	89	BANYAN GOLD CORP 100%	11/19/2025
YD115192	Quartz	BEAN	90	BANYAN GOLD CORP 100%	11/19/2025
YD115193	Quartz	BEAN	91	BANYAN GOLD CORP 100%	11/19/2025
YD115194	Quartz	BEAN	92	BANYAN GOLD CORP 100%	11/19/2025
YD115195	Quartz	BEAN	93	BANYAN GOLD CORP 100%	11/19/2025
YD115196	Quartz	BEAN	94	BANYAN GOLD CORP 100%	11/19/2025
YD115197	Quartz	BEAN	95	BANYAN GOLD CORP 100%	11/19/2025
YD115198	Quartz	BEAN	96	BANYAN GOLD CORP 100%	11/19/2025
YD115199	Quartz	BEAN	97	BANYAN GOLD CORP 100%	11/19/2025
YD115200	Quartz	BEAN	98	BANYAN GOLD CORP 100%	11/19/2025
YD115201	Quartz	BEAN	99	BANYAN GOLD CORP 100%	11/19/2025
YD115202	Quartz	BEAN	100	BANYAN GOLD CORP 100%	11/19/2025
YD115203	Quartz	BEAN	101	BANYAN GOLD CORP 100%	11/19/2025
YD115205	Quartz	BEAN	103	BANYAN GOLD CORP 100%	11/19/2025
YD115207	Quartz	BEAN	105	BANYAN GOLD CORP 100%	11/19/2025
YD115208	Quartz	BEAN	106	BANYAN GOLD CORP 100%	11/19/2025
YD115209	Quartz	BEAN	107	BANYAN GOLD CORP 100%	11/19/225
YD115210	Quartz	BEAN	108	BANYAN GOLD CORP 100%	11/19/2025
YD115211	Quartz	BEAN	109	BANYAN GOLD CORP 100%	11/19/2025
YD115212	Quartz	BEAN	110	BANYAN GOLD CORP 100%	11/19/2025
YD115213	Quartz	BEAN	111	BANYAN GOLD CORP 100%	11/19/2025
YD115214	Quartz	BEAN	112	BANYAN GOLD CORP 100%	11/19/2025
YD115215	Quartz	BEAN	113	BANYAN GOLD CORP 100%	11/19/2025
YD115216	Quartz	BEAN	114	BANYAN GOLD CORP 100%	11/19/2025
YD115217	Quartz	BEAN	115	BANYAN GOLD CORP 100%	11/19/2025
YD115218	Quartz	BEAN	116	BANYAN GOLD CORP 100%	11/19/2025
YD115219	Quartz	BEAN	117	BANYAN GOLD CORP 100%	11/19/2025
YD115220	Quartz	BEAN	118	BANYAN GOLD CORP 100%	11/19/2025
YD115221	Quartz	BEAN	119	BANYAN GOLD CORP 100%	11/19/2025
YD115222	Quartz	BEAN	120	BANYAN GOLD CORP 100%	11/19/2025
YD115223	Quartz	BEAN	121	BANYAN GOLD CORP 100%	11/19/2025
YD115224	Quartz	BEAN	122	BANYAN GOLD CORP 100%	11/19/2025
YD115229	Quartz	BEAN	127	BANYAN GOLD CORP 100%	11/19/2025
YD115230	Quartz	BEAN	128	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115231	Quartz	BEAN	129	BANYAN GOLD CORP 100%	11/19/2025
YD115232	Quartz	BEAN	130	BANYAN GOLD CORP 100%	11/19/2025
YD115249	Quartz	BEAN	147	BANYAN GOLD CORP 100%	11/19/2025
YD115250	Quartz	BEAN	148	BANYAN GOLD CORP 100%	11/19/2025
YD115251	Quartz	BEAN	149	BANYAN GOLD CORP 100%	11/19/2025
YD115252	Quartz	BEAN	150	BANYAN GOLD CORP 100%	11/19/2025
YD115253	Quartz	BEAN	151	BANYAN GOLD CORP 100%	11/19/2025
YD115254	Quartz	BEAN	152	BANYAN GOLD CORP 100%	11/19/2025
YD115255	Quartz	BEAN	153	BANYAN GOLD CORP 100%	11/19/2025
YD115256	Quartz	BEAN	154	BANYAN GOLD CORP 100%	11/19/2025
YD115257	Quartz	BEAN	155	BANYAN GOLD CORP 100%	11/19/2025
YD115258	Quartz	BEAN	156	BANYAN GOLD CORP 100%	11/19/2025
YD115259	Quartz	BEAN	157	BANYAN GOLD CORP 100%	11/19/2025
YD115260	Quartz	BEAN	158	BANYAN GOLD CORP 100%	11/19/2025
YD115261	Quartz	BEAN	159	BANYAN GOLD CORP 100%	11/19/2025
YD115262	Quartz	BEAN	160	BANYAN GOLD CORP 100%	11/19/2025
YD115263	Quartz	BEAN	161	BANYAN GOLD CORP 100%	11/19/2025
YD115264	Quartz	BEAN	162	BANYAN GOLD CORP 100%	11/19/2025
YD115265	Quartz	BEAN	163	BANYAN GOLD CORP 100%	11/19/2025
YD115266	Quartz	BEAN	164	BANYAN GOLD CORP 100%	11/19/2025
YD115269	Quartz	BEAN	167	BANYAN GOLD CORP 100%	11/19/2025
YD115270	Quartz	BEAN	168	BANYAN GOLD CORP 100%	11/19/225
YD115271	Quartz	BEAN	169	BANYAN GOLD CORP 100%	11/19/2025
YD115272	Quartz	BEAN	170	BANYAN GOLD CORP 100%	11/19/2025
YD115273	Quartz	BEAN	171	BANYAN GOLD CORP 100%	11/19/2025
YD115274	Quartz	BEAN	172	BANYAN GOLD CORP 100%	11/19/2025
YD115275	Quartz	BEAN	173	BANYAN GOLD CORP 100%	11/19/2025
YD115276	Quartz	BEAN	174	BANYAN GOLD CORP 100%	11/19/2025
YD115277	Quartz	BEAN	175	BANYAN GOLD CORP 100%	11/19/2025
YD115278	Quartz	BEAN	176	BANYAN GOLD CORP 100%	11/19/2025
YD115279	Quartz	BEAN	177	BANYAN GOLD CORP 100%	11/19/2025
YD115280	Quartz	BEAN	178	BANYAN GOLD CORP 100%	11/19/2025
YD115281	Quartz	BEAN	179	BANYAN GOLD CORP 100%	11/19/2025
YD115282	Quartz	BEAN	180	BANYAN GOLD CORP 100%	11/19/2025
YD115283	Quartz	BEAN	181	BANYAN GOLD CORP 100%	11/19/2025
YD115284	Quartz	BEAN	182	BANYAN GOLD CORP 100%	11/19/2025
YD115285	Quartz	BEAN	183	BANYAN GOLD CORP 100%	11/19/2025
YD115286	Quartz	BEAN	184	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115289	Quartz	BEAN	187	BANYAN GOLD CORP 100%	11/19/2025
YD115290	Quartz	BEAN	188	BANYAN GOLD CORP 100%	11/19/2025
YD115291	Quartz	BEAN	189	BANYAN GOLD CORP 100%	11/19/2025
YD115292	Quartz	BEAN	190	BANYAN GOLD CORP 100%	11/19/2025
YD115293	Quartz	BEAN	191	BANYAN GOLD CORP 100%	11/19/2025
YD115294	Quartz	BEAN	192	BANYAN GOLD CORP 100%	11/19/2025
YD115295	Quartz	BEAN	193	BANYAN GOLD CORP 100%	11/19/2025
YD115296	Quartz	BEAN	194	BANYAN GOLD CORP 100%	11/19/2025
YD115297	Quartz	BEAN	195	BANYAN GOLD CORP 100%	11/19/2025
YD115298	Quartz	BEAN	196	BANYAN GOLD CORP 100%	11/19/2025
YD115299	Quartz	BEAN	197	BANYAN GOLD CORP 100%	11/19/2025
YD115300	Quartz	BEAN	198	BANYAN GOLD CORP 100%	11/19/2025
YD115301	Quartz	BEAN	199	BANYAN GOLD CORP 100%	11/19/2025
YD115302	Quartz	BEAN	200	BANYAN GOLD CORP 100%	11/19/2025
YD115303	Quartz	BEAN	201	BANYAN GOLD CORP 100%	11/19/2025
YD115304	Quartz	BEAN	202	BANYAN GOLD CORP 100%	11/19/2025
YD115305	Quartz	BEAN	203	BANYAN GOLD CORP 100%	11/19/2025
YD115306	Quartz	BEAN	204	BANYAN GOLD CORP 100%	11/19/2025
YD115309	Quartz	BEAN	207	BANYAN GOLD CORP 100%	11/19/2025
YD115310	Quartz	BEAN	208	BANYAN GOLD CORP 100%	11/19/2025
YD115311	Quartz	BEAN	209	BANYAN GOLD CORP 100%	11/19/2025
YD115312	Quartz	BEAN	210	BANYAN GOLD CORP 100%	11/19/2025
YD115313	Quartz	BEAN	211	BANYAN GOLD CORP 100%	11/19/225
YD115314	Quartz	BEAN	212	BANYAN GOLD CORP 100%	11/19/2025
YD115315	Quartz	BEAN	213	BANYAN GOLD CORP 100%	11/19/2025
YD115316	Quartz	BEAN	214	BANYAN GOLD CORP 100%	11/19/2025
YD115317	Quartz	BEAN	215	BANYAN GOLD CORP 100%	11/19/2025
YD115318	Quartz	BEAN	216	BANYAN GOLD CORP 100%	11/19/2025
YD115319	Quartz	BEAN	217	BANYAN GOLD CORP 100%	11/19/2025
YD115320	Quartz	BEAN	218	BANYAN GOLD CORP 100%	11/19/2025
YD115321	Quartz	BEAN	219	BANYAN GOLD CORP 100%	11/19/2025
YD115322	Quartz	BEAN	220	BANYAN GOLD CORP 100%	11/19/2025
YD115323	Quartz	BEAN	221	BANYAN GOLD CORP 100%	11/19/2025
YD115324	Quartz	BEAN	222	BANYAN GOLD CORP 100%	11/19/2025
YD115325	Quartz	BEAN	223	BANYAN GOLD CORP 100%	11/19/2025
YD115326	Quartz	BEAN	224	BANYAN GOLD CORP 100%	11/19/2025
YD115329	Quartz	BEAN	227	BANYAN GOLD CORP 100%	11/19/2025
YD115330	Quartz	BEAN	228	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115331	Quartz	BEAN	229	BANYAN GOLD CORP 100%	11/19/2025
YD115332	Quartz	BEAN	230	BANYAN GOLD CORP 100%	11/19/2025
YD115333	Quartz	BEAN	231	BANYAN GOLD CORP 100%	11/19/2025
YD115334	Quartz	BEAN	232	BANYAN GOLD CORP 100%	11/19/2025
YD115335	Quartz	BEAN	233	BANYAN GOLD CORP 100%	11/19/2025
YD115336	Quartz	BEAN	234	BANYAN GOLD CORP 100%	11/19/2025
YD115337	Quartz	BEAN	235	BANYAN GOLD CORP 100%	11/19/2025
YD115338	Quartz	BEAN	236	BANYAN GOLD CORP 100%	11/19/2025
YD115339	Quartz	BEAN	237	BANYAN GOLD CORP 100%	11/19/2025
YD115340	Quartz	BEAN	238	BANYAN GOLD CORP 100%	11/19/2025
YD115341	Quartz	BEAN	239	BANYAN GOLD CORP 100%	11/19/2025
YD115342	Quartz	BEAN	240	BANYAN GOLD CORP 100%	11/19/2025
YD115343	Quartz	BEAN	241	BANYAN GOLD CORP 100%	11/19/2025
YD115344	Quartz	BEAN	242	BANYAN GOLD CORP 100%	11/19/2025
YD115345	Quartz	BEAN	243	BANYAN GOLD CORP 100%	11/19/2025
YD115346	Quartz	BEAN	244	BANYAN GOLD CORP 100%	11/19/2025
YD115347	Quartz	BEAN	245	BANYAN GOLD CORP 100%	11/19/2025
YD115348	Quartz	BEAN	246	BANYAN GOLD CORP 100%	11/19/2025
YD115349	Quartz	BEAN	247	BANYAN GOLD CORP 100%	11/19/2025
YD115350	Quartz	BEAN	248	BANYAN GOLD CORP 100%	11/19/2025
YD115351	Quartz	BEAN	249	BANYAN GOLD CORP 100%	11/19/2025
YD115352	Quartz	BEAN	250	BANYAN GOLD CORP 100%	11/19/2025
YD115353	Quartz	BEAN	251	BANYAN GOLD CORP 100%	11/19/2025
YD115354	Quartz	BEAN	252	BANYAN GOLD CORP 100%	11/19/225
YD115355	Quartz	BEAN	253	BANYAN GOLD CORP 100%	11/19/2025
YD115356	Quartz	BEAN	254	BANYAN GOLD CORP 100%	11/19/2025
YD115357	Quartz	BEAN	255	BANYAN GOLD CORP 100%	11/19/2025
YD115358	Quartz	BEAN	256	BANYAN GOLD CORP 100%	11/19/2025
YD115359	Quartz	BEAN	257	BANYAN GOLD CORP 100%	11/19/2025
YD115360	Quartz	BEAN	258	BANYAN GOLD CORP 100%	11/19/2025
YD115361	Quartz	BEAN	259	BANYAN GOLD CORP 100%	11/19/2025
YD115362	Quartz	BEAN	260	BANYAN GOLD CORP 100%	11/19/2025
YD115363	Quartz	BEAN	261	BANYAN GOLD CORP 100%	11/19/2025
YD115364	Quartz	BEAN	262	BANYAN GOLD CORP 100%	11/19/2025
YD115365	Quartz	BEAN	263	BANYAN GOLD CORP 100%	11/19/2025
YD115366	Quartz	BEAN	264	BANYAN GOLD CORP 100%	11/19/2025
YD115367	Quartz	BEAN	265	BANYAN GOLD CORP 100%	11/19/2025
YD115368	Quartz	BEAN	266	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115369	Quartz	BEAN	267	BANYAN GOLD CORP 100%	11/19/2025
YD115370	Quartz	BEAN	268	BANYAN GOLD CORP 100%	11/19/2025
YD115371	Quartz	BEAN	269	BANYAN GOLD CORP 100%	11/19/2025
YD115372	Quartz	BEAN	270	BANYAN GOLD CORP 100%	11/19/2025
YD115373	Quartz	BEAN	271	BANYAN GOLD CORP 100%	11/19/2025
YD115374	Quartz	BEAN	272	BANYAN GOLD CORP 100%	11/19/2025
YD115375	Quartz	BEAN	273	BANYAN GOLD CORP 100%	11/19/2025
YD115376	Quartz	BEAN	274	BANYAN GOLD CORP 100%	11/19/2025
YD115377	Quartz	BEAN	275	BANYAN GOLD CORP 100%	11/19/2025
YD115378	Quartz	BEAN	276	BANYAN GOLD CORP 100%	11/19/2025
YD115379	Quartz	BEAN	277	BANYAN GOLD CORP 100%	11/19/2025
YD115380	Quartz	BEAN	278	BANYAN GOLD CORP 100%	11/19/2025
YD115381	Quartz	BEAN	279	BANYAN GOLD CORP 100%	11/19/2025
YD115382	Quartz	BEAN	280	BANYAN GOLD CORP 100%	11/19/2025
YD115383	Quartz	BEAN	281	BANYAN GOLD CORP 100%	11/19/2025
YD115384	Quartz	BEAN	282	BANYAN GOLD CORP 100%	11/19/2025
YD115385	Quartz	BEAN	283	BANYAN GOLD CORP 100%	11/19/2025
YD115386	Quartz	BEAN	284	BANYAN GOLD CORP 100%	11/19/2025
YD115387	Quartz	BEAN	285	BANYAN GOLD CORP 100%	11/19/2025
YD115388	Quartz	BEAN	286	BANYAN GOLD CORP 100%	11/19/2025
YD115389	Quartz	BEAN	287	BANYAN GOLD CORP 100%	11/19/2025
YD115390	Quartz	BEAN	288	BANYAN GOLD CORP 100%	11/19/2025
YD115391	Quartz	BEAN	289	BANYAN GOLD CORP 100%	11/19/2025
YD115392	Quartz	BEAN	290	BANYAN GOLD CORP 100%	11/19/2025
YD115393	Quartz	BEAN	291	BANYAN GOLD CORP 100%	11/19/225
YD115394	Quartz	BEAN	292	BANYAN GOLD CORP 100%	11/19/2025
YD115395	Quartz	BEAN	293	BANYAN GOLD CORP 100%	11/19/2025
YD115396	Quartz	BEAN	294	BANYAN GOLD CORP 100%	11/19/2025
YD115397	Quartz	BEAN	295	BANYAN GOLD CORP 100%	11/19/2025
YD115398	Quartz	BEAN	296	BANYAN GOLD CORP 100%	11/19/2025
YD115399	Quartz	BEAN	297	BANYAN GOLD CORP 100%	11/19/2025
YD115400	Quartz	BEAN	298	BANYAN GOLD CORP 100%	11/19/2025
YD115401	Quartz	BEAN	299	BANYAN GOLD CORP 100%	11/19/2025
YD115402	Quartz	BEAN	300	BANYAN GOLD CORP 100%	11/19/2025
YD115403	Quartz	BEAN	301	BANYAN GOLD CORP 100%	11/19/2025
YD115404	Quartz	BEAN	302	BANYAN GOLD CORP 100%	11/19/2025
YD115405	Quartz	BEAN	303	BANYAN GOLD CORP 100%	11/19/2025
YD115406	Quartz	BEAN	304	BANYAN GOLD CORP 100%	11/19/2025

Grant Number	Regulation Type	Claim Name	Claim Number	Claim Owner	Claim Expiry Date
YD115407	Quartz	BEAN	305	BANYAN GOLD CORP 100%	11/19/2025
YD115408	Quartz	BEAN	306	BANYAN GOLD CORP 100%	11/19/2025
YD115409	Quartz	BEAN	307	BANYAN GOLD CORP 100%	11/19/2025
YD115410	Quartz	BEAN	308	BANYAN GOLD CORP 100%	11/19/2025
YD115411	Quartz	BEAN	309	BANYAN GOLD CORP 100%	11/19/2025
YD115412	Quartz	BEAN	310	BANYAN GOLD CORP 100%	11/19/2025
YD115413	Quartz	BEAN	311	BANYAN GOLD CORP 100%	11/19/2025
YD115414	Quartz	BEAN	312	BANYAN GOLD CORP 100%	11/19/2025
YD115415	Quartz	BEAN	313	BANYAN GOLD CORP 100%	11/19/2025
YD115416	Quartz	BEAN	314	BANYAN GOLD CORP 100%	11/19/2025
YD115417	Quartz	BEAN	315	BANYAN GOLD CORP 100%	11/19/2025
YD115418	Quartz	BEAN	316	BANYAN GOLD CORP 100%	11/19/2025
YD115419	Quartz	BEAN	317	BANYAN GOLD CORP 100%	11/19/2025
YD115420	Quartz	BEAN	318	BANYAN GOLD CORP 100%	11/19/2025
YD115421	Quartz	BEAN	319	BANYAN GOLD CORP 100%	11/19/2025
YD115422	Quartz	BEAN	320	BANYAN GOLD CORP 100%	11/19/2025
YD115423	Quartz	BEAN	321	BANYAN GOLD CORP 100%	11/19/2025
YD115424	Quartz	BEAN	322	BANYAN GOLD CORP 100%	11/19/2025
YD115425	Quartz	BEAN	323	BANYAN GOLD CORP 100%	11/19/2025
YD115426	Quartz	BEAN	324	BANYAN GOLD CORP 100%	11/19/2025
YD115427	Quartz	BEAN	325	BANYAN GOLD CORP 100%	11/19/2025
YD115428	Quartz	BEAN	326	BANYAN GOLD CORP 100%	11/19/2025
YD115429	Quartz	BEAN	327	BANYAN GOLD CORP 100%	11/19/2025
YD115430	Quartz	BEAN	328	BANYAN GOLD CORP 100%	11/19/2025
YD115431	Quartz	BEAN	329	BANYAN GOLD CORP 100%	11/19/2025
YD115432	Quartz	BEAN	330	BANYAN GOLD CORP 100%	11/19/225
YD115433	Quartz	BEAN	331	BANYAN GOLD CORP 100%	11/19/2025
YD115434	Quartz	BEAN	332	BANYAN GOLD CORP 100%	11/19/2025
YD115435	Quartz	BEAN	333	BANYAN GOLD CORP 100%	11/19/2025
YD115436	Quartz	BEAN	334	BANYAN GOLD CORP 100%	11/19/2025
YD115437	Quartz	BEAN	335	BANYAN GOLD CORP 100%	11/19/2025
YD115438	Quartz	BEAN	336	BANYAN GOLD CORP 100%	11/19/2025
YD115439	Quartz	BEAN	337	BANYAN GOLD CORP 100%	11/19/2025
YD115440	Quartz	BEAN	338	BANYAN GOLD CORP 100%	11/19/2025
YD115441	Quartz	BEAN	339	BANYAN GOLD CORP 100%	11/19/2025
YD115442	Quartz	BEAN	340	BANYAN GOLD CORP 100%	11/19/2025
YD115443	Quartz	BEAN	341	BANYAN GOLD CORP 100%	11/19/2025
YD115444	Quartz	BEAN	342	BANYAN GOLD CORP 100%	11/19/2025

Technical Report on the Updated Mineral Resource Estimate For the Main Zone, Hyland Gold Project, Watson Lake Mining District, Southeast Yukon, Canada

YD115445	Quartz	BEAN	343	BANYAN GOLD CORP 100%	11/19/2025
YD115446	Quartz	BEAN	344	BANYAN GOLD CORP 100%	11/19/2025
YD115447	Quartz	BEAN	345	BANYAN GOLD CORP 100%	11/19/2025
YD115448	Quartz	BEAN	346	BANYAN GOLD CORP 100%	11/19/2025
YD115449	Quartz	BEAN	347	BANYAN GOLD CORP 100%	11/19/2025
YD115450	Quartz	BEAN	348	BANYAN GOLD CORP 100%	11/19/2025
YD115451	Quartz	BEAN	349	BANYAN GOLD CORP 100%	11/19/2025
YD115452	Quartz	BEAN	350	BANYAN GOLD CORP 100%	11/19/2025
YD115453	Quartz	BEAN	351	BANYAN GOLD CORP 100%	11/19/2025
YD115454	Quartz	BEAN	352	BANYAN GOLD CORP 100%	11/19/2025
YD115455	Quartz	BEAN	353	BANYAN GOLD CORP 100%	11/19/2025
YD115456	Quartz	BEAN	354	BANYAN GOLD CORP 100%	11/19/2025

APPENDIX 2: Listing of Drill Hole and Trenches on the Hyland Gold Project

Drill Holes:

			Elevation				
Hole ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
HY88-001	562815	6708657	1214	77.40	1988	102.00	-50.00
HY88-002	562839.1	6708429.1	1251.9	93.30	1988	102.00	-50.00
HY88-003	562841.2	6708428.4	1251.8	100.60	1988	282.00	-50.00
HY88-004	562700	6708748	1163	96.00	1988	80.00	-50.00
HY90-001	562893.1	6708394.3	1253.2	71.60	1990	92.00	-50.00
HY90-002	562846.5	6708395.1	1254.5	82.60	1990	92.00	-50.00
HY90-003	562806.6	6708393.7	1257.0	67.10	1990	92.00	-50.00
HY90-004	562723.9	6708392.1	1257.6	88.40	1990	92.00	-50.00
HY90-005	562718.2	6708299.0	1265.3	91.40	1990	94.00	-50.00
HY90-006	562759.5	6708301.1	1259.5	76.20	1990	94.00	-50.00
HY90-007	562832.5	6708298.2	1256.2	79.20	1990	94.00	-50.00
HY90-008	562874.0	6708298.6	1254.0	79.20	1990	94.00	-50.00
HY90-009	562796.9	6708298.7	1258.8	153.00	1990	94.00	-50.00
HY90-010	562713.4	6708492.3	1235.5	73.20	1990	93.00	-50.00
HY90-011	562874.4	6708397.8	1253.4	45.70	1990	92.00	-50.00
HY90-012	562786.7	6708393.2	1256.5	91.40	1990	92.00	-50.00
HY90-013	562829.3	6708402.2	1255.2	76.20	1990	92.00	-50.00
HY90-014	562765.3	6708392.4	1255.2	152.40	1990	92.00	-50.00
HY90-015	562742.6	6708491.8	1237.9	73.20	1990	93.00	-50.00
HY90-016	562777.4	6708490.9	1240.8	67.10	1990	93.00	-50.00
HY90-017	562675.8	6708202.3	1269.8	59.40	1990	0.00	-90.00
HY90-018	562874.5	6708198.8	1249.4	42.70	1990	0.00	-90.00
HY90-019	562815.2	6708201.3	1251.7	61.00	1990	0.00	-90.00
HY90-020	562778.9	6708201.5	1251.8	118.30	1990	0.00	-90.00
HY90-021	562726.4	6708193.7	1254.7	55.50	1990	0.00	-90.00
HY90-022	562925.8	6708296.9	1249.5	48.80	1990	0.00	-90.00
HY90-023	562975.1	6708297.3	1242.8	146.30	1990	0.00	-90.00
HY90-024	562916.8	6708588.0	1237.5	73.20	1990	0.00	-90.00
HY90-025	562815.3	6708585.2	1231.0	152.40	1990	0.00	-90.00
HY90-026	562711.7	6708580.8	1213.3	61.00	1990	0.00	-90.00
HY90-027	562816.7	6708089.3	1225.3	61.00	1990	0.00	-90.00
HY90-028	562712.9	6708090.5	1233.6	143.30	1990	0.00	-90.00
HY90-029	562610.6	6708101.0	1241.4	91.40	1990	0.00	-90.00
HY90-030	562750	6708786	1159	102.10	1990	0.00	-90.00
HY90-031	562865.4	6708960.1	1168.6	90.80	1990	0.00	-90.00

			Elevation				
Hole ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
HY90-032	562941	6709124	1142	121.30	1990	0.00	-90.00
HY90-033	562999	6709358	1138	95.70	1990	0.00	-90.00
HY90-034	563066	6709551	1124	79.20	1990	0.00	-90.00
HY90-035	563095	6709771	1121	125.00	1990	0.00	-90.00
HY90-036	562916.919	6708694.2	1223.8	67.10	1990	0.00	-90.00
HY90-037	562814.4	6708691.3	1209.3	143.30	1990	0.00	-90.00
HY90-038	562718.8	6708685.9	1186.2	61.00	1990	0.00	-90.00
HY90-039	562968.6	6708490.8	1253.3	73.20	1990	0.00	-90.00
HY90-040	562914.4	6708490.7	1252.7	73.20	1990	0.00	-90.00
HY90-041	562865.4	6708494.4	1247.7	141.70	1990	0.00	-90.00
HY95-005	562594	6709081	1060	153.00	1995	90.00	-45.00
HY95-006	562658	6709499	1037	127.10	1995	90.00	-45.00
HY95-007	562346	6710022	990	159.10	1995	90.00	-55.00
HY-03-001	562763.2	6708436.5	1252.0	224.03	2003	90.00	-50.00
HY-03-002	562910.5	6708448.3	1253.0	217.93	2003	270.00	-60.00
HY-03-003	562892.5	6708639.1	1233.1	256.34	2003	270.00	-50.00
HY-03-004	562933	6709078	1164	152.40	2003	270.00	-50.00
HY-03-005	562989	6709568	1111	201.17	2003	90.00	-60.00
HY-03-006	563027	6709758	1062	202.69	2003	90.00	-50.00
HY-03-007	563054	6710050	1078	178.31	2003	90.00	-50.00
HY-03-008	562806.5	6708344.6	1258.1	235.92	2003	90.00	-50.00
HY-03-009	562793.8	6708242.4	1257.8	187.15	2003	90.00	-50.00
HY-03-010	562786.4	6708145.3	1243.6	190.20	2003	90.00	-50.00
HY-03-011	562660.8	6708045.5	1225.4	165.87	2003	90.00	-50.00
HY-03-012	562759.7	6708531.9	1227.7	204.79	2003	90.00	-50.00
HY-04-13	562766	6708641	1208	245.36	2004	90.00	-50.00
HY-04-14	562688.5	6708489.6	1234.8	303.58	2004	90.00	-50.00
HY-04-15	562690.4	6708362.1	1262.9	281.93	2004	90.00	-50.00
HY-04-16	562634.3	6708648.3	1180.0	202.69	2004	90.00	-50.00
HY-04-17	562809.5	6708841.8	1171.0	176.16	2004	90.00	-50.00
HY-04-18	563368	6709735	1213	175.25	2004	90.00	-50.00
HY-04-19	563625	6710271	1180	199.95	2004	80.00	-50.00
HY-04-20	563585	6707898	1111	214.88	2004	45.00	-50.00
HY05-21	564930	6708349	1060	199.95	2005	270.00	-47.00
HY05-22	562066	6704221	1546	349.30	2005	110.00	-50.00
HY05-23	562181	6705221	1425	251.76	2005	90.00	-50.00
HY05-24	562215	6704080	1571	183.79	2005	0.00	-55.00
HY10-25	562922.3	6708594.7	1237.5	156.67	2010	270.00	-50.00
HY10-26	562922.6	6708594.6	1237.5	202.08	2010	270.00	-70.00

			Elevation				
Hole ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
HY10-27	563117	6708963	1227	220.00	2010	260.00	-50.00
HY10-28	563060	6709550	1123	180.00	2010	90.00	-60.00
HY-11-29	562933.4	6708601.5	1237.9	201.00	2011	270.00	-60.00
HY-11-30	562933.4	6708601.5	1237.9	87.00	2011	250.00	-55.00
HY-11-31	563011.4	6708609.7	1243.8	300.00	2011	270.00	-55.00
HY-11-32	562712	6708088	1226	273.00	2011	270.00	-60.00
HY-11-33	562904	6707900	1177	129.00	2011	200.00	-55.00
HY-11-34	562904	6707900	1177	340.30	2011	200.00	-84.00
HY-11-35	563874	6705244	1244	300.00	2011	180.00	-57.00
HY-11-36	562154	6704107	1571	316.00	2011	200.00	-60.00
HY-11-37	562214	6704053	1582	255.00	2011	180.00	-55.00
HY-11-38	562007	6704169	1580	231.00	2011	200.00	-55.00
HY-11-39	562172	6703415	1617	30.00	2011	20.00	-50.00
HY-11-40	562859.3	6708157.4	1240.3	180.00	2011	90.00	-55.00
HY-11-41	562881.5	6708201.1	1249.3	198.00	2011	0.00	-90.00
HY-11-42	562870.6	6708245.4	1252.2	102.00	2011	90.00	-55.00
HY-11-43	562677.6	6708296.6	1263.7	201.00	2011	90.00	-55.00
HY-11-44	562895.6	6708634.9	1233.6	51.00	2011	0.00	-90.00
HY15-45	563070	6709549	1124	278.33	2015	240	-80
HY15-46	562724	6709597	1049	242.31	2015	240	-70
HY15-47	562662	6709230	1086	222.5	2015	240	-70
HY16-48	562867.6	6708588.4	1235.5	148.4	2016	90	-70
HY16-49	562823.5	6708537.1	1237.1	184.4	2016	90	-65
HY16-50	562824.1	6708492.7	1244.5	144.8	2016	90	-65
HY17-051	562914.5	6708347.5	1249.5	144.9	2017	270	-75
HY17-052	562840.7	6708399.6	1254.5	161.5	2017	90	-60
HY17-053	562840.2	6708399.7	1254.5	219.5	2017	90	-85
HY17-054	562750.7	6708348.5	1258.5	199.6	2017	90	-50
HY17-055	562942.1	6708447.3	1252.0	182.9	2017	270	-48
HY17-056	562938.9	6708516.7	1253.6	175.3	2017	270	-45
HY17-057	562939.6	6708516.7	1253.7	198.1	2017	270	-65
HY17-058	562895.1	6708533.3	1245.7	175.3	2017	270	-55
HY17-059	562769.9	6708693.7	1199.5	246.9	2017	90	-88
HY17-060	562770.7	6708693.9	1199.5	10.1	2017	90	-50
HY17-061	562771.5	6708693.7	1199.7	235.9	2017	90	-50
HY17-062	562864.6	6708687.6	1221.2	112.8	2017	90	-55
HY17-063	562851.2	6708759.3	1205.1	159.4	2017	90	-45
HY17-064	562963.0	6708756.6	12194	178.3	2017	270	-50
HY17-065	562903.2	6708796.0	1206.2	126.5	2017	270	-55

Technical Report on the Updated Mineral Resource Estimate For the Main Zone, Hyland Gold Project, Watson Lake Mining District, Southeast Yukon, Canada

			Elevation				
Hole ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
HY17-066	562925.8	6708845.8	1206.8	135.0	2017	270	-50
HY17-067	562785.9	6708715.6	1199.6	217.9	2017	90	-50
HY17-068	562835.5	6708787.6	1192.7	137.2	2017	90	-50
HY17-069	562707.7	6708776.5	1163.9	102.1	2017	90	-50
HY17-070	562753.6	6708796.6	1168.0	198.1	2017	90	-50
HY17-071	562759.9	6708845.4	1162.8	138.7	2017	90	-50
HY17-072	562907	6709000	1162	136.4	2017	270	-50
HY17-073	562868	6708601	1235	88.4	2017	87	-75
HY17-074	562836	6708449	1251.8	82.3	2017	90	-50
HY17-075	562836	6708449	1251.8	83.5	2017	355	-50

Trenches:

			Elevation				
Trench ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
TR87P01_A	563145.3	6710052.7	1085	75.1	1987	268.8	-6
TR87P01_B	563189.6	6710056.9	1085	44.5	1987	264.5	0
TR87P01_C	563203.9	6710060.1	1090	14.6	1987	257.3	-20
TR87P01_D	563239.3	6710076.9	1092	39.2	1987	244.7	-3
TR87P01_E	563279.9	6710052.2	1106	47.5	1987	301.3	-17
TR87P01_F	563332.3	6710056.6	1122	52.6	1987	265.2	-18
TR87P01_G	563343.8	6710054.4	1124	11.6	1987	280.8	-10
TR87P02_A	563000.2	6709905.7	1085	112.5	1987	91.9	17
TR87P02_B	563112.6	6709901.9	1118	15.4	1987	109.3	7
TR87P02_C	563127.1	6709896.8	1120	16.5	1987	130.7	-3
TR87P02_D	563139.6	6709886.1	1119	26	1987	163.8	-11
TR87P02_E	563146.9	6709861.1	1114	3.9	1987	122.2	0
TR87P02_F	563150.2	6709859	1114	41.7	1987	34.6	11
TR87P02_G	563173.9	6709893.3	1122	12.6	1987	44.2	14
TR87P02_H	563182.6	6709902.3	1125	10.8	1987	68	5
TR87P02_I	563192.6	6709906.4	1126	10.1	1987	116	-6
TR87P02_J	563201.7	6709901.9	1125	3.1	1987	66	0
TR87P02_K	563204.6	6709903.2	1125	5	1987	92.4	0
TR87P02_L	563209.5	6709903	1125	12.1	1987	65.9	5
TR87P03_A	562892.4	6709240	1146	49.3	1987	136.3	15
TR87P03_B	562926.5	6709204.3	1159	45	1987	142.2	14
TR87P03_C	562954.1	6709168.8	1170	45.3	1987	138.8	3
TR87P03_D	562984	6709134.7	1172	33.5	1987	158.7	25
TR87P03X	562950.2	6709140.6	1176	14.4	1987	174.2	-4

			Elevation				
Trench ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
TR87P04_A	562999.9	6708979.9	1206	40.6	1987	231.7	-16
TR87P04_B	563050.5	6709002.9	1210	55.6	1987	245.5	-4
TR87P04_C	563160	6709074	1223	130.6	1987	237	-6
TR87P04_D	563195.1	6709088.3	1224	37.9	1987	248	-2
TR87P05_A	562716.3	6708752	1167	14.1	1987	89.1	16
TR87P05_B	562760	6708803.8	1168	6.8	1987	180.2	8
TR87P05_C	562759.9	6708797	1169	99.2	1987	223	5
TR87P06_A	562805	6708848.6	1169	25.5	1987	296.8	-14
TR87P06_B	562810.6	6708830.5	1173	19	1987	343	-12
TR87P06_C	562819	6708775.1	1191	56	1987	351.3	-19
TR87P06_D	562869.3	6708734.2	1210	64.8	1987	309.2	-17
TR87P06_E	562902.1	6708700.7	1219	46.9	1987	315.6	-11
TR87P06_F	562940.5	6708670.3	1230	49	1987	308.4	-13
TR87P06_G	562990.7	6708637.9	1238	59.8	1987	302.8	-8
TR87P06_H	563030.5	6708618.4	1243	44.3	1987	296	-6
TR87P06_I	563043	6708618.3	1243	12.5	1987	270.5	0
TR87P06_J	563090	6708600.2	1239	50.4	1987	291.1	5
TR87P06_K	563099.5	6708591.1	1238	13.2	1987	313.7	4
TR87P06_L	563113.8	6708583.6	1238	16.2	1987	297.7	0
TR87P06_M	563158.5	6708568.3	1227	47.2	1987	288.8	13
TR87P06_N	563228.5	6708534.2	1214	77.8	1987	296	10
TR87P07_A	563258.5	6709742.3	1201	77.8	1987	171.6	13
TR87P07_B	563237.6	6709694.3	1204	11	1987	32.8	0
TR87P07_C	563243.5	6709703.5	1204	5.2	1987	56.6	0
TR87P07_D	563247.9	6709706.3	1204	15.9	1987	82.7	18
TR87P08_A	562661.6	6709090.1	1106	18.9	1987	123.1	9
TR87P08_B	562677.5	6709079.8	1109	131.7	1987	114.9	13
TR87P08_C	562796.9	6709024.2	1139	97.5	1987	108.8	16
TR87P09_A	563037.3	6709367.2	1148	14	1987	60.5	0
TR87P09_B	563049.4	6709374	1148	26.5	1987	30	-2
TR87P09_C	563062.7	6709397	1147	11	1987	61.1	-11
TR87P09_D	563072.3	6709402.3	1145	44.7	1987	39	-5
TR87P10_A	562992.8	6708166.5	1229	51.7	1987	81.4	-2
TR87P10_B	563043.9	6708174.2	1227	136.7	1987	84.4	-10
TR87P10_C	563180	6708187.5	1204	30.5	1987	79.4	-13
TR87P10_D	563210	6708193.1	1197	27.8	1987	71.1	-10
TR87P10_E	563236.3	6708202.1	1192	16.7	1987	59.2	-7
TR87P11_A	563001.1	6709725	1114	76.7	1987	60.3	2
TR87P11_B	563067.8	6709763.1	1116	21.5	1987	71.1	11

			Elevation				
Trench ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
TR87P11_C	563087.8	6709770	1120	42.1	1987	103.3	3
TR87P11_D	563128.8	6709760.3	1122	20.3	1987	60	11
TR87P11_E	563146.4	6709770.5	1126	17.1	1987	31.4	10
TR87P12_A	562619.4	6708558.3	1201	159.4	1987	88.1	9
TR87P12_B	562778.7	6708563.9	1226	67.2	1987	90.8	8
TR87P12_C	562845.9	6708563	1235	14.8	1987	81	4
TR87P12_D	562860.5	6708565.3	1236	61.6	1987	90	7
TR87P13_A	562780	6708198	1251	31.3	1987	225.8	-2
TR87P13_B	562814.2	6708214.1	1254	37.8	1987	244.7	-5
TR87P13_C	562817.5	6708214	1254	3.3	1987	271.5	0
TR87P13_D	562837.1	6708223.1	1252	21.6	1987	245.2	5
TR87P13_E	562852.8	6708238.6	1253	22.1	1987	225.2	-3
TR87P13_F	562917.3	6708275.2	1250	74.2	1987	240.5	2
TR87P14_A	563447.8	6708161.2	1161	54.2	1987	119.1	-2
TR87P14_B	563495.1	6708134.9	1159	45.1	1987	112.4	4
TR87P16_A	563105	6709457.4	1141	45.8	1987	15.9	10
TR87P16_B	563117.5	6709501.5	1149	19.2	1987	359.2	-3
TR87P16_C	563117.2	6709520.7	1148	28.2	1987	332.2	-6
TR87P16_D	563104.1	6709545.6	1145	17.8	1987	22.2	16
TR87P16_E	563110.8	6709562.1	1150	15.2	1987	359.8	19
TR87P16_F	563110.7	6709577.3	1155	17.8	1987	131.6	10
TR87P16_G	563124	6709565.5	1158	59.1	1987	51.6	27
TR87P17_A	563052.8	6709499.4	1120	12.5	1987	241.2	-14
TR87P17_B	563065.5	6709513.8	1121	19.2	1987	221.3	-3
TR87P17_C	563091.1	6709539.8	1134	36.5	1987	224.5	-21
TR87P17_D	563097.5	6709543	1141	7.1	1987	243.6	-80
TR87P17_E	563098.2	6709547.3	1142	4.4	1987	189.1	-13
TR87P18_A	563174.9	6708143.4	1198	41.8	1987	340.2	12
TR87P18_B	563176.4	6708129.1	1195	14.4	1987	353.7	12
TR87P20_A	563101.8	6709336.6	1173	6.3	1987	276	-9
TR87P20_B	563118.3	6709322	1175	22	1987	311.3	-5
TR87P20_C	563137.8	6709321	1182	19.5	1987	272.9	-21
TR87P20_D	563173.2	6709279	1196	54.9	1987	319.9	-15
TR87P22	563328.8	6709640.2	1220	57.7	1987	83.4	3
TR88P23_A	562575.7	6708422.5	1240	120.8	1988	262.7	-7
TR88P23_B	562590.5	6708421.5	1242	14.9	1988	274.1	-8
TR88P23_C	562644	6708428.7	1249	53.9	1988	262.3	-7
TR88P23_D	562677.2	6708425.8	1254	33.3	1988	274.9	-9
TR88P23_E	562690	6708433.6	1253	15	1988	238.6	4

			Elevation				
Trench ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
TR88P23_F	562726.4	6708428.7	1248	36.7	1988	277.7	8
TR88P23_G	562831.1	6708428.4	1253	104.8	1988	270.2	-3
TR88P23_H	562863.1	6708427.3	1252	32	1988	271.9	2
TR88P23_I	562900.8	6708426.5	1252	37.7	1988	271.3	0
TR88P23_J	562927	6708430.3	1252	26.5	1988	261.7	0
TR88P25_A	562605.9	6708648.7	1173	46.3	1988	83.4	10
TR88P25_B	562651.9	6708654	1181	85	1988	91	12
TR88P25_C	562736.8	6708652.5	1198	79	1988	87.3	12
TR88P25_D	562815.7	6708656.2	1215	12.2	1988	76.7	9
TR88P25_E	562827.6	6708659	1217	22.6	1988	83	3
TR88P25_F	562850	6708661.8	1218	19.4	1988	93.3	12
TR88P25_G	562869.4	6708660.6	1222	30.8	1988	84.8	6
TR88P25_H	562900	6708663.4	1225	14.2	1988	93.2	8
TR88P25_I	562914.1	6708662.6	1227	27.4	1988	73.8	6
TR88P26_A	563022.2	6709645	1119	12.6	1988	18.6	5
TR88P26_B	563021.1	6709613.4	1122	31.7	1988	2	-5
TR88P26_C	563035.2	6709584.7	1129	31.9	1988	333.8	-13
TR88P26_D	563063.6	6709553.4	1124	42.2	1988	317.7	7
TR88P27_A	562790.6	6709231.7	1117	54.2	1988	81.7	13
TR88P27_B	562844.3	6709239.4	1129	48.2	1988	89.4	21
TR88P28_A	562508.1	6708752.6	1133	104.5	1988	96.8	11
TR88P28_B	562611.8	6708740.2	1152	16	1988	75.7	11
TR88P28_C	562627.4	6708744.2	1155	14.2	1988	107.6	16
TR88P28_D	562640.9	6708739.9	1159	41.1	1988	86.3	8
TR88P28_E	562682	6708742.5	1165	35.6	1988	74.6	3
TR88P29_A	562778.2	6707894.7	1188	63.5	1988	95	-7
TR88P29_B	562841.5	6707889.2	1180	20.5	1988	90	-3
TR88P29_C	562862	6707889.2	1179	60.2	1988	79.9	-4
TR88P31_A	563572.9	6709239.5	1234	92.6	1988	88.9	0
TR88P31_B	563665.5	6709241.4	1234	10.9	1988	113.7	0
TR88P31_C	563675.5	6709237	1234	9.6	1988	61.3	0
TR88P31_D	563683.9	6709241.6	1234	84.2	1988	88.7	1
TR88P32_A	563092.2	6708696	1240	54	1988	89.5	2
TR88P32_B	563146.2	6708696.5	1242	6.4	1988	100.9	-9
TR88P32_C	563152.4	6708695.2	1241	11.2	1988	121.9	-21
TR88P32_D	563161.9	6708689.3	1237	8.5	1988	88.6	-21
TR88P32_E	563170.4	6708689.5	1234	6.5	1988	40.5	0
TR88P32_F	563174.6	6708694.5	1234	9.3	1988	67.2	6
TR88P32_G	563183.2	6708698.1	1235	21.2	1988	87.3	5

			Elevation				
Trench ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
TR88P33_A	563483.8	6709872	1205	58.3	1988	295.4	-15
TR88P33_B	563498.4	6709871.2	1209	14.7	1988	273.1	-16
TR88P34_A	563424.8	6709992.5	1164	19.9	1988	241.4	-6
TR88P34_B	563443.8	6710010.7	1171	26.3	1988	226.3	-15
TR88P34_C	563459.9	6710017.7	1176	17.5	1988	246.5	-17
TR88P34_D	563474.3	6710041.4	1177	27.7	1988	211.3	-2
TR88P36_A	562490.5	6708274.8	1250	49	1988	269.4	-4
TR88P36_B	562510.4	6708277.7	1252	20.1	1988	261.7	-6
TR88P36_C	562558.8	6708276.4	1255	48.4	1988	271.6	-4
TR88P36_D	562574.6	6708273.2	1257	16.2	1988	281.3	-7
TR88P36_E	562627.3	6708280.9	1260	53.2	1988	261.7	-3
TR88P36_F	562646.6	6708276.1	1261	19.9	1988	283.9	-3
TR88P36_G	562721.9	6708273.3	1264	75.3	1988	272.1	-2
TR88P36_H	562805.3	6708332.1	1256	102	1988	234.8	5
TR88P36_I	563037.5	6708337.5	1238	232.3	1988	268.7	4
TR88P37_A	562388.6	6708013.7	1233	302.8	1988	90.8	-4
TR88P37_B	562691.4	6708009.6	1214	97.2	1988	87.7	-1
TR88P37_C	562788.6	6708013.5	1212	45.1	1988	96.3	-9
TR88P37_D	562833.4	6708008.6	1205	13	1988	123.9	4
TR88P13X_A	562587.5	6708146.7	1249	110.2	1988	274.6	2
TR88P13X_B	562639.4	6708152.2	1253	52.3	1988	264	-4
TR88P13X_C	562654	6708148	1251	15.2	1988	286.2	8
TR88P13X_D	562663.3	6708151.2	1251	9.9	1988	251.2	0
TR88P13X_E	562670.1	6708149.3	1251	7	1988	285.3	0
TR88P13X_F	562690.5	6708156.1	1251	21.5	1988	251.7	0
TR88P13X_G	562697.7	6708154.6	1249	7.3	1988	281.5	16
TR88P13X_H	562740.8	6708161.3	1249	43.7	1988	261.2	0
TR88P13X_I	562757.6	6708176.2	1250	22.4	1988	228.4	-3
TR17-01	562918.1	6708336	1249	24	2017	270	2
TR17-02	562834.2	6708431.2	1252	96	2017	90	0
TR17-03_A	562775.1	6708441.7	1252	39	2017	8	0
TR17-03_B	562782.2	6708450.9	1252	47	2017	10	-2
TR17-03_C	562843	6708494.9	1245	90	2017	45	-2
TR17-04_A	562765	6708534	1228	40	2017	65	9
TR17-04_B	562801.3	6708550.7	1234	112	2017	46	-1
TR17-05	562926	6708665	1227	116	2017	267	-6
TR17-06a	562821	6708855.4	1172	26	2017	203	0
TR17-06b	562810	6708844.5	1171	24	2017	180	17
TR17-06c	562804.1	6708834	1172	34	2017	226	0

Technical Report on the Updated Mineral Resource Estimate For the Main Zone, Hyland Gold Project, Watson Lake Mining District, Southeast Yukon, Canada

			Elevation				
Trench ID	Easting	Northing	(m)	Length	Year	Azimuth	Dip
TR17-07	562825	6708732.6	1206	22	2017	242	-8

APPENDIX 3: Hyland Gold Property Royalties Review

June 1, 2011

680 - 1066 West Hastings Street Vancouver, BC V6E 3X2

Tel: 604-682-5122 Fax: 604-682-5232

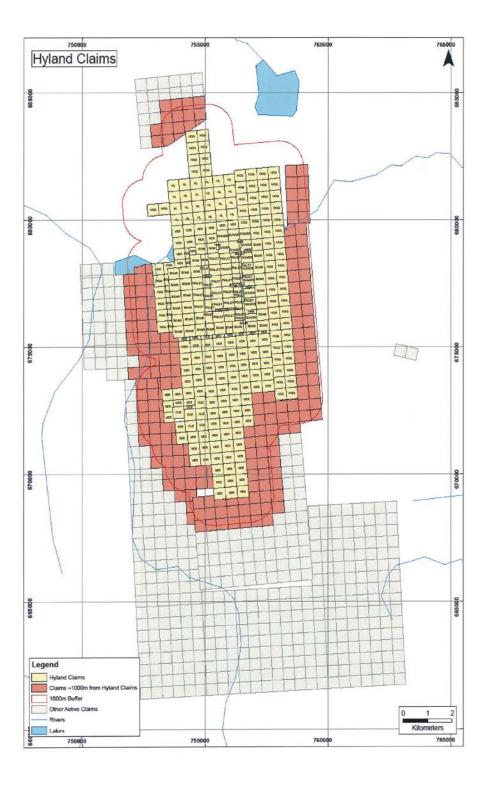
Re: Hyland Gold Project Area of Interest

Attn: Mark Ayranto, Vice President Yukon

Dear Mr. Ayranto,

Argus Metals Corp ("Argus") wishes to formally notify Victoria Gold Corp ("VIT") that it has undertaken the staking of addition ground adjacent to, and contiguous with the Hyland Gold Project which is under option to Argus from VIT. The option agreement, dated January 24, 2010, contains a 1 kilometer area of interest. With respect to this area of interest, attached is Schedule A which presents the original claims as per the option agreement, the additional staking by Argus in Fall 2010 and the 1km area of interest. Schedule B reflects a list of claims that are impinged by the area of interest.

I would personally like to thank Hugh Coyle for prompting me to address this issue. Should you require anything else please do not hesitate to contact me.


Yours truly, Argus Metals Corp

Michael Collins, P.GEO President and CEO

CC: Hugh Coyle, Lands Manager, Victoria Gold Corp.

Paul D. Gray, Director, Argus Metals Corp.

Schedule A: Map of Hyland Claims, Ikm Area of Interest and affected claims

Schedule B: List of Claims affected by the VIT I km Area of interest surrounding the Hyland Gold Project

GRANTNUMBE	LABEL	CLAIM_TYPE	DATE_CREAT	STATUS	SHAPE_AREA	SHAPE_LEN
YD113143	PORK 143	Quartz	29/11/2010 0:00	Active	2081690529	1820.204456
YD113117	PORK 117	Quartz	29/11/2010 000	Active	209031.0661	1828.796614
YD113087	PORK 87	Quartz	29/11/2010 0:00	Active	193883.8766	1761.904769
YD113079	PORK 79	Quartz	29/11/2010 0:00	Active	204598.3051	1809.405707
YD113134	PORK 134	Quartz	29/11/2010 000	Active	209030.9464	1828.796091
YD113133	PORK 133	Quartz	29/11/2010 0:00	Active	209031.2506	1828.797421
YD113129	PORK 129	Quartz	29/11/20100:00	Active	209031.0661	1828.796614
YD113127	PORK 127	Quartz	29/11/20100:00	Active	209031.9216	1828.800357
YD113174	PORK 174	Quartz	29/11/20100:00	Active	156281.7704	1598.334801
YD115151	BEAN 49	Quartz	09/12/2010 0:00	Active	202499.9756	1799999891
YD115147	BEAN 45	Quartz	09/12/2010 0:00	Active	202500.0185	1800.000082
YD115193	BEAN 91	Quartz	09/12/20100:00	Active	202500.0185	1800.000082
YD113203	PORK 203	Quartz	29/11/2010 0:00	Active	58386.85536	1233.415136
YD113150	PORK 150	Quartz	29/11/2010 0:00	Active	209031.8455	1828.800024
YD113217	PORK 217	Quartz	29/11/20100:00	Active	209031.8327	1828.799968
YD113138	PORK 138	Quartz	29/11/20100:00	Active	209031.4069	1828.798105
YD113188	PORK 188	Quartz	29/11/2010 000	Active	209031.8255	1828.799936
YD113113	PORK 113	Quartz	29/11/2010000	Active	238880.3736	1959.371025
YD113246	PORK 246	Quartz	29/11/2010 000	Active	197268.1688	1777.687696
YD113080	PORK 80	Quartz	29/11/2010 000	Active	204602.0924	1809.422275
YD115100	ROAST54	Quartz	13/12/2010 000	Active	202500.017	1800000075
YD113159	PORK 159	Quartz	29/11/2010 000	Active	167377.023	1646.583661
YD113086	PORK86	Quartz	29/11/2010 000	Active	211272.2441	1842997451
YD113181	PORK 181	Quartz	29/11/2010000	Active	134154.7195	1588.477915
YD113142	PORK 142	Quartz	29/11/2010 000	Active	209032.1128	1828.7993
YD113131	PORK 131	Quartz	29/11/2010000	Active	209032.1558	1828.801381
YD113176	PORK 176	Quartz	29/11/2010000	Active	148869.6143	1565.910333
YD113171	PORK 171	Quartz	29/11/2010 0:00	Active	209031.842	1828.800008
YD113116	PORK 116	Quartz	29/11/20100:00	Active	209032.1298	1828.801267
YD113115	PORK 115	Quartz	29/11/2010 0:00	Active	209031.9216	1828.800357
YD113247	PORK 247	Quartz	29/11/20100:00	Active	202490 .2089	1800.495958
YD113107	PORK 107	Quartz	29/11/2010 0:00	Active	195817.8767	1770.924116
YD113074	PORK 74	Quartz	29/11/2010 0:00	Active	1335292625	1516.869046
YD115156	BEAN 54	Quartz	09/12/2010 0:00	Active	62786.30353	1194.481544
YD115198	BEAN 96	Quartz	09/12/2010 0:00	Active	198829.5693	1806.683696
YD115142	BEAN 40	Quartz	09/12/2010 0:00	Active	2025000318	1800.000141
YD113158	PORK 158	Quartz	29/11/2010 0:00	Active	176962.3779	1688.75672
GRANTNUMBE	LABEL	CLAIM_TYPE	DATE_CR EAT	STATUS	SHAPE_AREA	SHA PE_LEN
YD113240	PORK 240	Quartz	29/11/2010 0:00	Active	210633.7463	183S.809394

YD113178	PORK 178	Quartz	29/11/2010 0:00	Active	141457.3344	1533.486038
YD113220	PORK 220	Quartz	29/11/20100:00	Active	209031.8381	1828.799991
YD113141	PORK 141	Quartz	29/11/2010 0:00	Active	182886.0914	1741.571125
YD113140	PORK 140	Quartz	29/11/2010 0:00	Active	209031.04	1828.7965
YD113120	PORK 120	Quartz	29/11/2010 0:00	Active	209031.92	1828800349
YD113244	PORK 244	Quartz	29/11/2010000	Active	210048.5224	1837.290548
YD113100	PORK 100	Quartz	29/11/2010 0:00	Active	190668.344	1746 907329
YD113089	PORK 89	Quartz	29/11/2010 000	Active	190667.6624	1746931373
YD115158	BEAN 56	Quartz	09/12/2010 0:00	Active	39381.7322	1011.502978
YD115157	BEAN 55	Quartz	09/12/2010 000	Active	184137.5545	1718389622
YD115152	BEAN 50	Quartz	09/12/2010 000	Active	78487.00638	1249.051346
YD115202	BEAN 100	Quartz	09/12/2010 000	Active	9255289883	1306.483246
YD115229	BEAN 127	Quartz	09/12/2010 0:00	Active	202499.9756	1799.999891
YD113164	PORK 164	Quartz	29/11/2010 0:00	Active	168122.0015	1649.84256
YD113152	PORK 152	Quartz	29/11/20100:00	Active	209031.8752	1828.800154
YD113145	PORK 145	Quartz	29/11/2010 0:00	Active	209031.8741	1828.800149
YD113119	PORK 119	Quartz	29/11/20100:00	Active	209031.9345	1828.800413
YD113060	PORK 60	Quartz	29/11/2010 0:00	Active	204594.5328	1809.389207
YD113132	PORK 132	Quartz	29/11/20100:00	Active	209032.3894	1828.802403
YD113128	PORK 128	Quartz	29/11/2010 0:00	Active	20903 1.1898	1828.797155
YD113194	PORK 194	Quartz	29/11/2010 0:00	Active	2090318255	1828.799936
YD113097	PORK 97	Quartz	29/11/2010 0:00	Active	1948509615	1766.414822
YD113067	PORK 67	Quartz	29/11/2010 0:00	Active	205617.2977	1813.864807
YD115205	BEAN 103	Quartz	09/12/2010 0:00	Active	71772.88426	1195.503412
YD115143	BEAN41	Quartz	09/12/2010 0:00	Active	202500.0185	1800.000082
YD115192	BEAN 90	Quartz	09/12/2010 0:00	Active	128036 .5922	1469.313191
YD115230	BEAN 128	Quartz	09/12/20100:00	Active	103354.1925	1359.613488
YD113207	PORK 207	Quartz	29/11/2010 000	Active	184629.1766	1707242255
YD113169	PORK 169	Quartz	29/11/2010 0:00	Active	209031.8555	1828800067
YD113248	PORK 248	Quartz	29/11/2010 0:00	Active	214652.6639	1855 989943
YD113243	PORK 243	Quartz	29/11/20100:00	Active	210252.5181	1838.241874
YD113106	PORK 106	Quartz	29/11/2010 0:00	Active	210456.4713	1839.193019
YD113078	PORK78	Quartz	29/11/2010000	Active	195598.6679	1770.037203
YD115153	BEAN 51	Quartz	09/12/20100:00	Active	202499.9889	1799 99995
YD115200	BEAN 98	Quartz	09/12/2010 000	Active	100408.9189	1346.524033
YD113070	PORK70	Quartz	29/11/2010 0:00	Active	203280.4318	1803.640735
YD113157	PORK 157	Quartz	29/11/20100:00	Active	209032 2052	1828.803025
YD113147	PORK 147	Quartz	29/11/2010 0:00	Active	209031.8467	1828.800029
YD113124	PORK 124	Quartz	29/11/2010 0:00	Active	209030.735	1828.795166
YD113218	PORK 218	Quartz	29/11/2010 0:00	Active	209031.8354	1828.799979
YD113209	PORK 209	Quartz	29/11/20100:00	Active	2090318354	1828.799979

GRANTNUMBE	LABEL	CLAIM_TYPE	DATE_CREAT	STATUS	SHAPE_AREA	SHAPE_LEN
YD113122	PORK 122	Quartz	29/11/2010 0:00	Active	209032 .3519	1828.802239
YD113168	PORK 168	Quartz	29/11/20100:00	Active	209031.8255	1828.799936
YD113099	PORK 99	Quartz	29/11/20100:00	Active	190670.5499	1746.917617
YD113068	PORK 68	Quartz	29/11/20100:00	Active	206166.7843	1816.268511
YD115150	BEAN 48	Quartz	09/12/2010 0:00	Active	195552.598	1808.085933
YD115146	BEAN 44	Quartz	09/12/2010 0:00	Active	202500.0185	1800.000082
YD115232	BEAN 130	Quartz	09/12/2010 0:00	Active	96447.09602	1328.91561
YD113073	PORK 73	Quartz	29/11/20100:00	Active	219720.5343	1875.557196
YD113151	PORK 151	Quartz	29/11/2010 0:00	Active	209031.8467	1828800029
YD113123	PORK 123	Quartz	29/11/2010 0:00	Active	209031.0661	1828.796614
YD113130	PORK 130	Quartz	29/11/2010 0:00	Active	209030 .735	1828.795166
YD113163	PORK 163	Quartz	29/11/2010 0:00	Active	209031.842	1828800008
YD113111	PORK 111	Quartz	29/11/2010 0:00	Active	196072.0494	1772.108042
YD113104	PORK 104	Quartz	29/11/2010 0:00	Active	196674.3324	1774917307
YD113109	PORK 109	Quartz	29/1 /20100:00	Active	190666.1503	1746.897099
YD115098	ROAST 52	Quartz	13/12/2010 0:00	Active	202500.0185	1800.000082
YD115145	BEAN 43	Quartz	09/12/2010 0:00	Active	202500.0185	1800.000082
YD115144	BEAN 42	Quartz	09/12/2010 0:00	Active	202500.0185	1800.000082
YD113242	PORK242	Quartz	29/11/2010 0:00	Active	210232.862	1834.053689
YD113144	PORK 144	Quartz	29/11/2010 0:00	Active	204458.7319	1841.382829
YD113192	PORK 192	Quartz	29/11/2010 0:00	Active	209031.8255	1828.799936
YD113237	PORK 237	Quartz	29/11/2010 0:00	Active	196072.0338	1772.107964
YD113102	PORK 102	Quartz	29/11/2010 0:00	Active	196073.1386	1772.113116
YD113108	PORK 108	Quartz	29/11/20100:00	Active	196301.3527	1773.178842
YD113090	PORK90	Quartz	29/11/2010 0:00	Active	190672.7835	1746.928028
YD113050	PORK 50	Quartz	29/11/2010 0:00	Active	2032854073	1803.662498
YD115196	BEAN94	Quartz	09/12/2010 0:00	Active	2025000037	1800.000016
YD113166	PORK 166	Quartz	29/11/2010 0:00	Active	167749.3668	1648.212486
YD113154	PORK 154	Quartz	29/11/20100:00	Active	191 124.4468	1751.251024
YD113153	PORK 153	Quartz	29/11/2010 000	Active	2167874712	1862.931248
YD113216	PORK 216	Quartz	29/11/2010 0:00	Active	209031.851	1828.800048
YD113165	PORK 165	Quartz	29/11/2010 0:00	Active	209031.842	1828.800008
YD113239	PORK 239	Quartz	29/11/2010 0:00	Active	196072.773	1772.11 1408
YD113161	PORK 161	Quartz	29/11/2010 0:00	Active	135711.6703	1473.831393
YD113156	PORK 156	Quartz	29/11/20100:00	Active	183399.2035	1716.914605
YD113206	PORK206	Quartz	29/11/20100:00	Active	209031.8354	1828.799979
YD113149	PORK 149	Quartz	29/11/2010000	Active	209031.8741	1828.800149
YD113213	PORK 213	Quartz	29/11/2010 0:00	Active	209031.8483	1828.800036
YD113139	PORK 139	Quartz	29/11/2010 000	Active	209031.2661	1828.797489
YD113125	PORK 125	Quartz	29/11/2010 0:00	Active	209031.9345	1828.800413
YD113088	PORK88	Quartz	29/11/2010 0:00	Active	194367.5333	1764.160299
YD113200	PORK 200	Quartz	29/11/2010 0:00	Active	209031.8405	1828.800002

GRANTNUMBE	LABEL	CLAIM_TYPE	DATE_CREAT	STATUS	SHAPE_AREA	SHAPE_LEN
YD113173	PORK 173	Quartz	29/11/2010 0:00	Active	2090318405	1828.800002
YD113241	PORK 241	Quartz	29/11/2010 0:00	Active	196447.2025	1773.858062
YD113071	PORK 71	Quartz	29/11/20100:00	Active	212752.6993	1845.076726
YD115203	BEAN 101	Quartz	09/12/2010 0:00	Active	81665.12673	1263.217342
YD115092	ROAST 46	Quartz	13/12/2010 0:00	Active	202500.017	1800.000075
YD115194	BEAN 92	Quartz	09/12/2010 0:00	Active	177671.4985	1798.83751
YD115197	BEAN 95	Quartz	09/12/20100:00	Active	202500 .0466	1800.000206
YD113054	PORK54	Quartz	29/11/2010 0:00	Active	219714.1534	1875.529277
YD113058	PORK 58	Quartz	29/11/2010 0:00	Active	195600.4262	1770.044911
YD113160	PORK 160	Quartz	29/11/2010 0:00	Active	170524.6423	1660.595457
YD113179	PORK 179	Quartz	29/11/2010 0:00	Active	209031.842	1828.800008
YD113136	PORK 136	Quartz	29/11/2010 0:00	Active	209032.4699	1828.802755
YD113170	PORK 170	Quartz	29/11/20100:00	Active	200648 9334	1828.643994
YD113118	PORK 118	Quartz	29/11/2010 0:00	Active	209030.752	1828.79524
YD113114	PORK114	Quartz	29/11/2010 0:00	Active	238823 .8319	1959.123697
YD113110	PORK 110	Quartz	29/11/2010 0:00	Active	189871.4085	1747 298905
YD113095	PORK 95	Quartz	29/11/2010 0:00	Active	211068.2482	1842 .046125
YD113076	PORK76	Quartz	29/11/2010 0:00	Active	131876.9119	1504.345782
YD115148	BEAN 46	Quartz	09/12/2010 0:00	Active	202500.0318	1800.000141
YD113056	PORK 56	Quartz	29/11/2010 000	Active	216667.7618	1862.202981
YD113162	PORK 162	Quartz	29/11/2010 0:00	Active	92101.17012	1486.987997
YD113155	PORK 155	Quartz	29/11/2010 0:00	Active	209032.1951	1828.803025
YD113215	PORK 215	Quartz	29/11/2010 0:00	Active	209031.8354	1828.799979
YD113177	PORK 177	Quartz	29/11/2010 0:00	Active	209031.8405	1828800002
YD113175	PORK 175	Quartz	29/11/2010 0:00	Active	209031.842	1828.800008
YD113098	PORK 98	Quartz	29/11/2010 000	Active	195334.4342	1768.669537
YD115201	BEAN 99	Quartz	09/12/2010 000	Active	1992698489	1808.215022
YD115102	ROAST 56	Quartz	13/12/2010 000	Active	183625.9779	1716.115483
YD115199	BEAN 97	Quartz	09/12/2010 000	Active	202500.0318	1800.000141
YD113146	PORK 146	Quartz	29/11/2010 0.00	Active	2090318455	1828800024
YD113219	PORK 219	Quartz	29/11/2010 0:00	Active	209031.8354	1828.799979
YD113137	PORK 137	Quartz	29/11/2010 0:00	Active	209031.4874	1828.798457
YD113214	PORK214	Quartz	29/11/2010 0:00	Active	209031.8199	1828.799911
YD113121	PORK 121	Quartz	29/11/2010 0:00	Active	209031.9216	1828.800357
YD113245	PORK245	Quartz	29/11/2010 0:00	Active	196784.7678	1775.433297
YD113065	PORK 65	Quartz	29/11/20100:00	Active	225910.5406	1902.637169
YD113066	PORK66	Quartz	29/11/2010 0:00	Active	225678 .7532	1901.623226
YD113069	PORK69	Quartz	29/11/2010 0:00	Active	203282 .9113	1803.651578
YD115140	BEAN 38	Quartz	09/12/2010 0:00	Active	202500.0037	1800.000016
YD115231	BEAN 129	Quartz	09/12/2010 0:00	Active	199895.7539	1787.075081
YD113077	PORK77	Quartz	29/11/20100:00	Active	195599.5373	1770.041018
YD113180	PORK 180	Quartz	29/11/2010 0:00	Active	134045.2111	1501.061638

Technical Report on the Updated Mineral Resource Estimate For the Main Zone, Hyland Gold Project, Watson Lake Mining District, Southeast Yukon, Canada

GRANTNUMBE	LABEL	CLAIM_TYPE	DATE_CREAT	STATUS	SHAPE_AREA	SHAPE_LEN
YD113208	PORK 208	Quartz	29/11/2010 0:00	Active	209031.8381	1828.799991
YD113126	PORK 126	Quartz	29/11/2010 0:00	Active	209032.9522	1828.804792
YD113096	PORK 96	Quartz	29/11/2010 0:00	Active	210864.3282	1841.095116
YD113135	PORK 135	Quartz	29/11/2010 0:00	Active	209032.1558	1828.801381
YD113238	PORK 238	Quartz	29/11/2010 0:00	Active	196072.0232	1772.107917
YD113112	PORK 112	Quartz	29/11/2010 0:00	Active	196072.0492	1772.108042
YD115195	BEAN 93	Quartz	09/12/2010 000	Active	202499.9904	1799.999957
YD115094	ROAST 48	Quartz	13/12/2010 000	Active	202S00 .0185	1800.000082
YD115190	BEAN 88	Quartz	09/12/2010 000	Active	134943.5117	1500.010638
YD115155	BEAN 53	Quartz	09/12/2010 0:00	Active	202500.0185	1800.000082
YD113075	PORK 75	Quartz	29/11/2010 0:00	Active	216662.9286	1862.18184
YD113048	PORK 48	Quartz	29/11/20100:00	Active	20S0678521	1811.461284
YD113148	PORK 148	Quartz	29/11/2010 0:00	Active	209031.8752	1828.800154
YD113182	PORK 182	Quartz	29/11/20100:00	Active	98972.76426	1263.124707
YD113210	PORK 210	Quartz	29/11/2010 0:00	Active	209031.8354	1828.799979
YD113196	PORK 196	Quartz	29/11/2010 0:00	Active	209031.8255	1828.799936
YD113198	PORK 198	Quartz	29/11/2010 0:00	Active	209031.8255	1828.799936
YD113105	PORK 105	Quartz	29/11/2010 0:00	Active	210660.3892	1840.144028
YD113085	PORK8S	Quartz	29/11/2010 000	Active	211475.9803	1843947724
YD113172	PORK 172	Quartz	29/11/2010 0:00	Active	163694.0625	16307S9212
YD113190	PORK 190	Quartz	29/11/2010 0:00	Active	209031.8255	1828.799936
YD113167	PORK 167	Quartz	29/11/2010 0:00	Active	209031.8555	1828800067
YD113184	PORK 184	Quartz	29/11/2010 0:00	Active	209031.8405	1828 800002
YD113072	PORK 72	Quartz	29/11/20100:00	Active	129083.2614	1485.463277
YD113052	PORK 52	Quartz	29/11/2010 0:00	Active	212757.4908	1845.097685
YD115096	ROAST 50	Quartz	13/12/2010 0:00	Active	202500 .017	1800.000075
YD115154	BEAN 52	Quartz	09/12/2010 0:00	Active	72157.82333	1220.922095
YD115149	BEAN 47	Quartz	09/12/2010 0:00	Active	202500 .0466	1800.000206
YD113204	PORK 204	Quartz	29/11/2010 0:00	Active	166042.3351	1710.068263

YD113205 PORK 205 Quartz 29/11/2010 0:00 Active 7832085338 1354.46634

Technical Report on the Updated Mineral Resource Estimate For the Main Zone, Hyland Gold Project, Watson Lake Mining District, Southeast Yukon, Canada

Claim Name	Claim Type	Status	Good to Date	Cash Minerals Royalty %	Strategic Metals Ltd. Royalty %	Adrian Resources Ltd. Royalty	StrataGold Corporation Royalty %
VER 162	Quartz	Active	2017/02/ 14	1	0.25	0	1.25
VER 17	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 171	Quartz	Active	2017/02/14	1	0.25	0	1.25
VER 172	Quartz	Active	2017/02/14		0.25	0	1.25
VER 173	Quartz	Active	2017/02/14		0.25	0	1.25
VER 174	Quartz	Active	2017/02/14		0.25	0	1.25
VER 175	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 176	Quartz	Active	2017/02/14		0.25	0	1.25
VER 177	Quartz	Active	2017/02/14		0.25	0	1.25
VER 178	Quartz	Active	2017/02/14		0.25	0	1.25
VER 179	Quartz	Active	2017/02/14		0.25	0	1.25
VER 180	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 181	Quartz	Active	20 17/02/14		0.25	0	1.25
VER 182	Quartz	Active	2017/02/14		0.25	0	1.25
VER 183	Quartz	Active	2017/02/14		0.25	0	1.25
VER 184	Quartz	Active	2017/02/14		0.25	0	1.25
VER 185	Quartz	Active	2017/02/14		0.25	0	1.25
VER 186	Quartz	Active	20 17/02/14		0.25	0	1.25
VER 227	Quartz	Active	2017/02/14		0.25	0	1.25
VER 228	Quartz	Active	2017/02/14		0.25	0	1.25
VER 229	Quartz	Active	2017/02/14		0.25	0	1.25
VER 230	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 231	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 232	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 233	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 234	Quartz	Active	2017/02/ 14		0.25	0	1.25
VER 235	Quartz	Active	2017/02/14	Ι.	0.25	0	1.25
VER 236	Quartz	Active	2017/02/14		0.25	0	1.25
VER 29	Quartz	Active	20 17/02/ 14	1,	0.25	0	1.25
VER 240	Quartz	Active	2017/02/14		0.25	0	1.25
VER 24 1	Quatiz	Active	2017/02/14		0.25	0	1.25
VER 242	Quartz	Active	2017/02/14		0.25	0	1.25
VER 243	Quartz	Active	2017/02/14	1.	0.25	0	1.25
VER 37	Quartz	Active	2017/02/14		0.25	0	1.25
VER 38	Quartz	Active	2017/02/14		0.25	0	1.25