SARCOBATUS FLAT LITHIUM BRINE PROJECT

Exploration Target NI 43-101 Technical Report Nye County, NEVADA, USA

Prepared For: Rainmaker Resources Ltd

Authored by: Douglas L. Beahm, P.E., P.G. Principal BRS Inc. Riverton, Wyoming

November 1, 2016

SARCOBATUS FLAT LITHIUM BRINE PROJECT

Table of Contents

1	Sun	1 mary
	1.1	Project Overview
	1.2	Project Description
	1.3	Development and Regulatory Status
	1.4	History
	1.5	Geology and Mineralization
	1.6	Exploration Target
	1.7	Conclusions7
	1.8	Recommendations7
	1.9	Summary of Risks
2	Intro	oduction9
3	Reli	ance on Other Experts10
4	Prop	perty Description and Location11
	4.1	Property Description and Location
	4.2	Mining Claims
	4.3	Permitting and Environmental Liabilities11
	4.4	State and Local Taxes and Royalties
	4.5	Surface Rights
	4.6	Encumbrances and Risks
5	Acc	essibility, Climate, Local Resources, Infrastructure and Physiography13
	5.1	Topography, Elevation and Vegetation
	5.2	Access
	5.3	Climate
	5.4	Property Infrastructure
	5.5	Land Use
	5.6	Flora and Fauna14
	5.7	Surface Rights and Local Resources
6	Hist	ory
	6.1	Ownership History of the Sarcobatus Property15
	6.2	Exploration and Development Work Undertaken15
7	Geo	logical Setting and Mineralization16
	7.1	Regional Geologic Setting

	7.2	Geothermal Activity Sarcobatus Flat	20
	7.3	Lithium Source Rocks	22
	7.4	Lithium Brines	22
8	D	Deposit Types	23
9	F	Exploration	24
,	0.1	Listorical Evaluation	24
	9.1		
	9.2	Current Exploration	24
	9.3	Exploration Target Definition	26
	9.4	Exploration Target Parameters	26
	9.5	Exploration Target Estimate	27
1	0	Drilling	29
1	1	Sample Preparation, Analysis and Security	
1	- 7	Data Verification	31
1.	2 22	Section Net Applied by the French section Transf	
1.	3-22	Sections Not Applicable to Exploration Target	
2.	3	Adjacent Properties	
24	4 Oth	ner Relevant Data and Information	35
2	5	Interpretation and Conclusions	
2	6	Recommendations	
2	7	References	
2	8 Dat	te and Signature Page	
T	int o	f Tablas	
L	<i>isi o</i> j able	1 1 Acronyms	1
Т	able	1.2 Terms and Abbreviations	
Т	able	1.3 Exploration Target Estimate	7
Т	able	7.1 Lithium Concentration in Closed and Open Basins (weight %)	17
Т	able	9.1 Samples and Lithium Assays	24
Т	able	9.1 Exploration Target Estimate	
L	ist oj	f Figures	
F	igure	e 1.1 Location Map	3
F	igure	e 1.2 Claim Map	5
F	igure	e 7.1 Southern Nevada Closed Basins	18
F	igure	e 7.2 Regional Geology Map	19
F	igure	e 7.3 Geothermal Activity Sarcobatus Flat	21
F	igure	e 8.1 Schematic Deposit Model for Lithium Brines	23
F	igure	9.1 Sample Location Map	25
F	igure	e 23.1 Adjacent Claims Map	34
A A	.ppen .ppen	ndix A - Mining Claims ndix B - Analytical Data	

Quarta to Electrication Data Da

1 Summary

This report titled "Sarcobatus Flat Lithium Brine Project, Exploration Target, NI 43-101 Technical Report" was prepared in accordance with National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43-101) and has an effective date of November 1, 2016. The report was prepared on behalf of Rainmaker Resources Ltd., 3rd Floor Bellevue Center 235 15th St. West Vancouver, BC V7T 2X1 and was prepared by BRS Inc., 1130 Major Avenue, Riverton, Wyoming, 82501, Douglas Beahm, Principal Engineer and Geologist.

The Sarcobatus Flat Project (the Project) is an early stage exploration project and as such mineral resources cannot be estimated or declared at this time. This report provides an assessment of an Exploration Target for the Project, as a restricted disclosure, as allowed under NI 43-101 Part 2.3.2, which defines the potential quantity and grade of mineralization, expressed as ranges, for further exploration. All tonnages, grade, and contained lithium, as stated in this report, for Exploration Targets should not be construed to reflect a calculated mineral resource (inferred, indicated, or measured). The potential quantities and grades for exploration targets are conceptual in nature and there has been insufficient work to date to define a NI 43-101 compliant resource. Furthermore, it is uncertain if additional exploration will result in discovery of an economic mineral resource within these areas.

Table 1.1 provides a summary of acronyms used in this report. Table 1.2 provides a brief list of terms and abbreviations used in this report.

Abbreviation	Term
BLM	US Bureau of Land Management
CSAMT	Controlled Source Audio-Frequency Magnetotellurics
DF	Dilution Factor
MDM	Mount Diablo Meridian
mg/kg	milligrams per kilogram
ND	Not Detected
RL	Reporting Limit
RMR	Rainmaker Resources LTD
UMR	Utah Mineral Resources LLC
WETLAB	Western Environmental Testing Laboratory

Table 1.1 Acronyms

Table 1.2 Terms and Abbreviations

GENERAL TERMS AND ABBREVATIONS									
					Metric: US				
	Term	Abbreviation	Term	Abbreviation	Conversion				
Area	Square Meters	m^2	Square Feet	Ft ²	10.76				
Area	hectare	На	Acre	Ac	2.47				
Volume	Cubic Meters	m ³	Cubic Yards	Су	1.308				
Length	Meter	m	Feet	Ft	3.28				
Distance	Kilometer	km	Mile	mile	0.6214				
Weight	Kilogram	kg	Pound	Lb	2.20				
Weight	Metric Ton	tonne	Short Ton	Ton	1.10				

1.1 Project Overview

The Sarcobatus Flat Project is an exploration stage project located in Nye County, southwestern Nevada, USA. The Project is located within a playa in a closed basin which has a geologic setting similar to the Clayton Valley, the site of the only current active lithium production in the USA, which is located approximately 45 air miles (70 kilometers) southeast. The project area is located about 60 road miles (96 kilometers) south of the historic mining town of Tonopah which has a population of 2,600 and provides all basic services. Mineral tenure consists of 234 unpatented placer mining claims (4,680 acres) which were located by Utah Mineral Resources LLC (UMR) on Federal land. Rainmaker Resources Ltd. has optioned 100% of the claims from UMR.

1.2 Project Description

Figure 1 shows the general location of the Project. The Project is an early stage exploration project seeking Lithium brine deposits within a closed playa basin in the Basin and Range Geologic Province of Nevada. The geologic model for the Project follows the US Geological Survey Preliminary Deposit Model for Lithium Brines (Bradley, D, et al 2013). The geologic setting of the Project is similar to that of producing Lithium brine deposits in the Clayton Valley approximately 45 air miles north of the Project.

Figure 1.1 Location Map

1.3 Development and Regulatory Status

There have been no site development activities on the Project. There are abandoned historic precious metal mines and a processing facility in the vicinity. Surface and mineral resources within the project are administered by the US Bureau of Land Management (BLM). Current site activities including geologic mapping and surface sampling are allowed under BLM regulations as "casual use". No permits are in place for drilling or the use of mechanized equipment for road building or exploratory excavation on the Project. Exploratory drilling was being conducted on an adjacent property on August 9, 2016 when the Author visited the site.

1.4 History

The Project is located within the Sarcobatus Flat a closed structural basin, within the Bonnie Claire Mining District (Precious Metals). No production of lithium in the district is reported in the literature; however, in 1975 the USGS sampled the Sarcobatus Flat basin along with nine other basins in Nevada and southern California, including the Clayton Valley. Surface soil samples in Sarcobatus Flat ranged from 150 to 300 ppm Li (Cannon et al, 1975).

Utah Mineral Resources conducted a regional survey for lithium brines in Nevada and selected the Sarcobatus Flat as a prime exploration target. On December 21, 2015, a total of 48 placer mining claims (BONNIE Claims) were located. Rainmaker Resources Ltd. (RMR) signed an option to acquire 100% of the UMR claims in May of 2016. On June 21 and 22, 2016 another 186 placer mining claims (BC claims) were located adjacent to the BONNIE claims (Figure 2)

A surface sampling program was completed on the property by RMR on June 29, 2016. Nineteen (19) samples were collected as shown on Figure 4. These samples were collected with a hand auger at depths of 40 to 48 inches. The lithium content of the samples is anomalous ranging from 140 ppm to 300 ppm and averaged 233 ppm (Refer to Section 9). On August 9, 2016, the author collected duplicate samples for analysis at four sites spatially located across the Project which verified the sample data (refer to Section 12).

1.5 Geology and Mineralization

Sarcobatus Flat lies within the Basin and Range physiographic province. The province is characterized by north-south oriented mountain ranges formed by block-faulting that are separated by broad valleys. The rocks exposed in the mountain ranges consist of sedimentary, igneous and metamorphic rocks that range in age from Precambrian to Tertiary. The valleys are filled with younger (Quaternary and Tertiary aged) sediments which are often unconsolidated. Weathering and erosion have filled the valleys with alluvium and products of volcanism to depths of several thousand feet (Cannon, et al, 1975). Basins such as Sarcobatus Flat are filled with Pleistocene and Holocene sediments interbedded with volcanic tuffs.

Surrounding Sarcobatus Flat are the Stonewall Mountain to the northeast, Gold Mountain to the northwest and the Amargosa Range to the south. The bedrock of these uplifted areas surrounding the Flat consists in large part of volcanic tuff and ash that could be a source of an economic lithium brine resource. A similar geologic setting occurs in the Clayton Valley where lithium is produced from subsurface. Surface samples of sediments in Clayton Valley that were collected by the US Geological Survey contained 100 ppm to 300 ppm lithium (Cannon, et al, 1975) and are comparable to recent samples collect on the Project.

Regionally Tertiary volcanic rocks are considered the likely source of Lithium brine deposits within closed basins (Davis et al, 1986). The geologic formations and structural setting of the project area are consistent with the US Geological Survey Preliminary Deposit Model for Lithium Brines (Bradley, D, et al 2013).

1.6 Exploration Target

This report provides an assessment of an Exploration Target for the Project, as a restricted disclosure, as allowed under NI 43-101 Part 2.3.2. The key parameters and assumptions for the estimation of an Exploration Target for Lithium brines within the Project are as follows (Refer to Section 9):

- 1. *Thickness of potential aquifers bearing Lithium brines*. Drilling on adjacent claims showed a thickness of 350 feet which was applied
- 2. *Porosity of the potential bearing Lithium brines*. Drainage porosities of medium grained sandstones and silts range from 27 to 20 %, respectively, (Brady and Kunkel, 2003) and the Author recommends use of this range of effective porosity for the estimation of an Exploration Target.
- 3. *Aerial extent of the potential Lithium bearing aquifers:* The Author has assumed that the potential aquifers underlie approximately 80% of the total area or 3,744 acres.
- 4. *Grade or concentration of Lithium in the brines:* Based on limited publicly available data, for the purposes of estimating an Exploration Target, the Author has estimated the Exploration Target at grade values of 60, 100, and 150 ppm reflecting low median and high ranges, respectively.
- 5. For the purposes of estimating an Exploration Target the Author has applied a unit weight of water of 62.43 pounds per cubic foot.
- 6. Analytical data is stated in ppm Lithium metal. The salable product is presumed to be Lithium Carbonate, Li₂CO₃ which by stoichiometric conversion is 5.32 times the Lithium metal content.

Table 1.3 summarizes the Exploration Target for the Sarcobatus Flat Project based on the foregoing parameters.

Rang e	Aquifer Thickness (Feet)	Effectiv e Porosity (%)	Area (Acres)	Grade Li (ppm)	Li2CO3* (Pounds x1,000)	Short Tons*
Low	350	0.20	3,744	60	227,000	113,500
High	350	0.27	3,744	150	768,000	384,000

Table 1.3 Exploration Target Estimate

*Numbers rounded

The foregoing estimate of an Exploration Target for the Project is allowed as a restricted disclosure under NI 43-101 Part 2.3.2, which defines, disclosing the potential quantity and grade of mineralization, expressed as ranges, for further exploration. All tonnages, grade, and contained lithium and as stated in this report should not be construed to reflect a calculated mineral resource (inferred, indicated, or measured). The potential quantities and grades for exploration targets are conceptual in nature and there has been insufficient work to date to define a NI 43-101 compliant resource. Furthermore, it is uncertain if additional exploration will result in discovery of an economic mineral resource within these areas.

1.7 Conclusions

The author considers the data available to be reliable for the purposes of this report. The geologic setting of the Project reasonably conforms to the Preliminary Deposit Model for Lithium Brines as developed by the US Geological Survey (Bradley, et al, 2013). Exploration data reported from the adjacent Iconic Mineral property has reportedly yielded favorable results however; similar data is not available on the Project. It is recommended that exploration be continued, however, there is a risk that additional exploration will not result in discovery of an economic mineral lithium brine resource within the project area.

1.8 Recommendations

It is recommended that exploration and development of the Sarcobatus Flat project be continued and that exploration be conducted in phases with each successive phase being dependent upon the results of the previous phase.

- Phase 1 Conduct gravity geophysical surveys
 - Estimated cost US\$50,000.
- Phase 2 Conduct Controlled Source Audio-frequency Magnetotellurics (CSAMT) geophysical surveys.
 - Estimated costs US\$75,000.
- Phase 3 Initial drilling to determine presence or absence of lithium brines.
 - Estimate 3 drill holes at 1,500 feet depth
 - Estimated cost per hole including drilling, on-site geologist, and hydrological testing, water sampling, and analyses; US\$200,000 each.
 - Estimated cost US\$600,000.

- Phase 4 Conceptual engineering study and reservoir analysis.
 - Estimated cost US\$50,000.
- Phase 5 Follow-up Drilling
 - Estimate 7 drill holes at 1,500 feet depth
 - Estimated cost per hole including drilling, on-site geologist, and hydrological testing, water sampling, and analyses; US\$200,000 each.
 - Estimated cost US\$1,400,000.
- Phase 6 Mineral Resource Estimation and Preliminary Economic Assessment (PEA)
 - Estimated cost US\$200,000.
- Total Estimated Cost UD\$2,375,000

1.9 Summary of Risks

There is a risk that additional exploration will not result in discovery of an economic mineral lithium brine resource within the project area. In addition, the project does have some risks similar in nature to other exploration projects in general and lithium brine projects in particular. Risks common to exploration and mining projects include:

- * Future commodity demand and pricing;
- * Environmental and political acceptance of the project;
- * Variance in capital and operating costs;
- * Mine and mineral processing recovery;

2 Introduction

This Technical Report was prepared for Rainmaker Resources, Ltd. (RMR) in compliance with National Instrument 43-101, *Standards of Disclosure for Mineral Projects*. RMR is a British Columbia corporation with primary office at 3rd Floor Bellevue Center, 235 15th Street, West Vancouver, BC V7T 2X1, Canada. The Company is an exploration stage mineral exploration company that holds an option to acquire a 100% interest in the Sarcobatus Flat property in Nye County, Nevada, USA. RMR is traded publicly on the TX Venture Exchange market under the symbol RIR. The company is in the process of exploring the Sarcobatus Flat property with the purpose of discovering and developing lithium resources in brines.

This report has been prepared for the purpose of summarizing all of the available information on the property RMR has designated as the Sarcobatus Flat Lithium Brine Prospect (Sarcobatus). Additionally, this report is intended to provide a baseline of scientific, technical and exploration information on which future exploration and possible lithium brine development may be based. Sarcobatus has the potential to contain economic lithium resources. The recommended exploration plan is designed to identify the presence, quantity and quality of any lithium-bearing groundwater brines which could be present in the property subsurface.

Published reports, maps, company press releases and other available information have been evaluated and reviewed in the preparation of this report. Reports and publications referred to in the report at listed in Section 27 (References).

The author of this report, Mr. Douglas Beahm, is both a Professional Geologist and a Professional Engineer, and a Registered Member of the US Society of Mining Engineers (SME). Mr. Beahm is a Qualified Person (QP) and is independent of RMR using the test set out in Section 1.5 of NI 43-101. Mr. Beahm has worked as an engineer and a geologist associated with the mineral industry for over 40 years beginning in 1974. Relevant work experience includes: mineral exploration, conventional and in situ recovery mine production, and mine/mill decommissioning and reclamation. Relevant commodity experience includes: epigenetic and syngenetic sedimentary hosted mineral deposits, evaporate deposits, and rare earth deposits. As owner, consultant and principal engineer of BRS Engineering Inc., Mr. Beahm has provided geological and engineering services relative to the development of mining and reclamation plans for a variety of mining projects and authored more than twenty 43-101 reports.

Mr. Beahm visited the project on August 9, 2016. During his visit to the property Mr. Beahm examined the Project and completed tasks to verify the mineral tenure and sample data, including:

- Examination of mining claim and discovery monuments.
- Collection of four near surface samples to verify current sample data.
- Observation of sample handling and preservation protocol.

In addition, during the site visit Mr. Beahm observed that exploratory drilling was being conducted by others on mining claims adjacent to the Project.

3 Reliance on Other Experts

The location, extent and terms relating to mineral tenure were provided by RMR. They were relied upon in defining the mineral holdings of RMR in the development of this report. The author verified by a search of BLM records that the mining claims are considered active by the BLM. Annual payments for 2016 have been made and the mining claims will remain valid until September 1, 2017 when the next annual payment is due.

O. Jay Gatten, Certified Professional Geologist, provided basic information relative to the history and setting relating of the Project. Mr. Gatten is not independent of RMR as a minority stockholder in Rainmaker Resources and a partner in Utah Mineral Resources which vended the Sarcobatus Flat Property to Rainmaker Resources Ltd.

The author has independently verified data used is this report and finds it to be reliable for the purposes of this report.

4 Property Description and Location

4.1 Property Description and Location

The total area of the Sarcobatus Flat project is approximately 4,680 acres. It is located in portions of Sections 12, 13, 24 & 25 of Township 8 South - Range 43 East and Sections 7, 8, 17, 18, 19, 20, 30 & 31 of Township 8 South - Range 44 East, MDM, Nye County, southwestern Nevada. The project area is located approximately 60 miles (96 kilometers) by road south of Tonopah and 30 miles north of Beatty (Figure 1).

4.2 Mining Claims

The Sarcobatus Flat Lithium Brine Project consists of 234 unpatented placer mining claims at 20 acres each. The claim block covers a well-developed playa and surrounding area in the northern part of a large closed sedimentary basin. A map of the claims is shown as Figure 2, and individual claims and identifications are listed Appendix A.

Under the option agreement, Rainmaker can earn an undivided 100% interest in the property by making the following payments:

- a) Shares of the company valued at US \$35,000 (at a deemed price of \$0.07, per share within seven days of the company receiving all necessary approvals from the TSX-V (paid), and
- b) US \$75,000 in cash or shares in the company at the first anniversary, and
- c) US \$100,000 in cash or shares in the company at the second anniversary, and
- d) US \$150,000 in cash or shares in the company at the third anniversary, and
- e) Spending no less than US \$50,000 on exploration of the property in each of the first three years, and
- f) Reserving a 2% NSR to the option or, 50% of which can be purchased by the company for US \$1,000,000 before the fifth anniversary of the agreement.

4.3 Permitting and Environmental Liabilities

The project is located entirely on public land that is administered by the BLM. Surface access to the mining claims and work involving "casual use" such as surface geologic mapping, geochemical sampling and geophysical surveys is right associated with mining claims. Permits are required for motorized work and surface disturbances such as road building, drilling and/or trenching. The type of permit required is dependent upon the nature and extent of the surface disturbance in accordance with BLM's 3809 regulations. A Notice of Intent to explore is required for drilling activities which disturb less than 5 acres. A Plan of Operations is required for disturbance exceeding 5 acres and all mine extraction operations.

An Environmental Assessment (EA) has not been completed for the Project but will be required prior to development activities. The author is not aware of any specific environmental issues or liabilities related to the Project.

4.4 State and Local Taxes and Royalties

Rainmaker Resources has the option to acquire a 100% interest in the mineral title of the Sarcobatus project. No royalty is payable to the Federal Government for minerals produced from the claims. There is a 2% gross production royalty (Net Smelter Return) payable to Utah Mineral Resources. Half of this royalty can be purchased from RMR by a payment of US \$1,000,000. There is no mineral severance tax in place on mining operations in Nevada.

Mining companies in Nevada pay three kinds of state and county taxes in addition to federal taxes, including:

- The Net Proceeds of Mines (NPOM) Tax, which has existed for decades and was increased from 3.65 percent to 5 percent in 1989. Mining is one of only four industries in Nevada with an industry-specific tax that must be paid in addition to conventional business taxes. More than half of NPOM tax revenue goes to the Nevada General Fund and is distributed on a per capita basis throughout the state. The remainder goes to the county in which the minerals were produced.
- Property taxes, which are paid on property, plants, and facilities, stay almost exclusively in the counties and special tax districts where mines are located.
- Sales and use taxes are primarily distributed throughout the state on a per capita basis, while a small amount goes to the state's General Fund and to school districts statewide on a per pupil basis. Because modern mining is a capital intensive business that spends significant amounts on sophisticated equipment and supplies, sales taxes are the largest tax obligation for the industry.

(http://www.nevadamining.org/issues_policy/taxation.php)

4.5 Surface Rights

Surface use on mining claims on BLM lands for the purposes of mineral development is allowed subject to CFR 3809 regulations but require permits depending on the type of use and area of disturbance. Additional surface rights would be required for the development of project infrastructure as the Project develops.

4.6 Encumbrances and Risks

The unpatented placer mining claims will remain valid provided the filing and annual payment requirements with Nye County and the BLM are kept current. Legal surveys of unpatented lode mining claims are not required and are not known to have been completed. All of the unpatented lode mining claims have annual filing requirements (\$155 per claim) with the BLM, to be paid on or before September 1 of each year. The 2016 payments have been made and the mining claims are valid until September 1, 2017 when the next annual payment is due. Mining claims are subject to the Mining Law of 1872. Changes in the mining law could affect the mineral tenure. In addition, a Notice of Intent to Hold is filed each year with the Nye County Recorder's Office at a cost of \$12 per claim and \$4 per document.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

Nye County is a large area with a small population. According to the 2010 census the 47,030 Km^2 area had a population of 43,946. Tonopah, the county seat, with a population of about 2,600, is located approximately 60 road miles (96 kilometers) north of the project. Drilling and exploration sources are available in Reno, Nevada and Salt Lake City, Utah.

5.1 Topography, Elevation and Vegetation

The Sarcobatus Project is located within the Great Basin physiographic province in a closed sedimentary basin. The area is a low, flat-lying plain including a large playa. The elevation of the area is about 1215 meters (3950 feet) and topographic relief is very low. Vegetation is sparse and consists of hardy, low-growing grasses and sage that are able to survive in high salinity soils and arid conditions. There is no vegetation growing on the playa.

5.2 Access

There is good road access to the project. The project is located just south of Scotty's Junction, the intersection of US Highway 95 and State Highway 267. Access to the playa is by 4WD vehicle or ATV's. Access from State Highway 267 is shown on Figure 2.

5.3 Climate

Climate conditions allow for year-round operations. The climate is arid with an average precipitation of about 6 inches annually. A ground water appraisal of the Sarcobatus Flat (Malmberg and Eakin, 1962) states that annual recharge to the basin in on the order of 3,500 acre feet as compared to some 3,000 acre feet of annual evapotranspiration. Of the total inflow an estimated 1,200 acre feet is from precipitation and the remaining 2,300 acre feet is from ground water underflow from Stonewall and Gold Flat. The high evapotranspiration rate as compared to the recharge rate accounts for the formation of the playa development in the basin.

The following table summarizes climatic data for Goldfield, Nevada located approximately 30 miles to the north. The climate at the Project will differ somewhat due to its lower elevation.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Decord high OF (OC)	67.0	76.0	79.0	87.0	97.0	108.0	108.0	103.0	98.0	87.0	79.0	66.0	108
Record lingli F (C)	(19.4)	(24.4)	(26.1)	(30.6)	(36.1)	(42.2)	(42.2)	(39.4)	(36.7)	(30.6)	(26.1)	(18.9)	(42.2)
Avorago high °F (°C)	42.2	47.1	54.2	62.5	71.3	81.4	89.6	87.4	79.0	66.5	52.9	43.3	64.78
Average lingli F (C)	(5.7)	(8.4)	(12.3)	(16.9)	(21.8)	(27.4)	(32)	(30.8)	(26.1)	(19.2)	(11.6)	(6.3)	(18.21)
Daily mean °F (°C)	20.3	24.3	29.0	35.2	42.9	50.9	58.7	56.9	48.9	38.8	28.3	21.5	37.98
	(-6.5)	(-4.3)	(-1.7)	(1.8)	(6.1)	(10.5)	(14.8)	(13.8)	(9.4)	(3.8)	(-2.1)	(-5.8)	(3.32)
Record low °F (°C)	-23.0	-13.0	0.0	8.0	19.0	22.0	38.0	36.0	21.0	12.0	-1.0	-13.0	-23
Record low F(C)	(-30.6)	(-25)	(-17.8)	(-13.3)	(-7.2)	(-5.6)	(3.3)	(2.2)	(-6.1)	(-11.1)	(-18.3)	(-25)	(-30.6)
Average precipitation inches	0.63	0.77	0.63	0.54	0.50	0.37	0.45	0.52	0.44	0.44	0.38	0.39	6.06
(mm)	(16)	(19.6)	(16)	(13.7)	(12.7)	(9.4)	(11.4)	(13.2)	(11.2)	(11.2)	(9.7)	(9.9)	(154)
Average snowfall inches (cm)	3.3	3.7	3.6	1.9	0.5	0	0	0	0	0.7	1.5	2.6	17.8
riverage showran menes (em)	(8.4)	(9.4)	(9.1)	(4.8)	(1.3)	(0)	(0)	(0)	(0)	(1.8)	(3.8)	(6.6)	(45.2)

Climate data for Goldfield, Nevada (1906-2009)

https://en.wikipedia.org/wiki/Goldfield,_Nevada

5.4 Property Infrastructure

There is no existing infrastructure on the subject property. The basic transportation network necessary to support exploration activity is located close to the Project. Water is scarce and would be required to support lithium production facilities, including evaporation ponds.

5.5 Land Use

Historically the land has been used for mining, milling and livestock grazing. There are no active current mining operations in the immediate vicinity. Livestock grazing continues but is limited by the climate and limited vegetation.

5.6 Flora and Fauna

Detailed vegetation and wildlife surveys of the project area have not been completed. There is no vegetation on the playa itself. Sarcobatus Flat is named for plants of the genus Sarcobatus, which are commonly known as greasewood or salt brush, and these hardy plants are found outside the margins of the playa. The site photo shows the barren playa with salt brush (Sarcobatus) in the foreground.

The author observed jack rabbits, lizards, and some birds at the site. Review of published maps and data by the US fish and Wildlife indicates that the area is not critical habitat for any listed threatened or endangered species. The Author is not aware of any Federal or State species of interest which would hinder development of the Project.

5.7 Surface Rights and Local Resources

As discussed in Section 4.0, RMR has sufficient surface access rights for exploration and development activities. By virtue of rights held by mining claims, access for "casual use" is in place, and drilling, bulk sampling, trenching, etc. can be done through the permitting process which is regulated by the US Bureau of Land Management.

6 History

The Project is located in the historic Bonnie Claire Mining District (precious metals). The site of a past gold mining and milling operation is located west of the mining claims. No lithium production has been reported in the district. No historical mineral estimates are known for the Project.

6.1 Ownership History of the Sarcobatus Property

Utah Mineral Resources conducted a regional survey for lithium brines in Nevada and selected the Sarcobatus Flat area as a prime exploration target based the geologic setting and on high lithium values in surface sediments, as reported by the US Geological Survey (Cannon, et al, 1975). On December 21, 2015 UMR staked 48 placer mining claims (BONNIE Claims) to cover the playa. Rainmaker Resources signed an option agreement to acquire 100% of the UMR claims in May of 2016. On June 21 and 22, 2016 another 186 placer mining claims (BC claims) were located by UMR on behalf of RMP.

6.2 Exploration and Development Work Undertaken

A surface sampling program was completed on the property on June 29, 2016. Nineteen (19) samples were collected on the Project. The samples were collected with a hand auger at depths of 40 to 48 inches (102 - 122 centimeters). Lithium content of the June 29, 2016 samples ranges from 140 ppm to 300 ppm and average 233 ppm (Refer to Section 9 including Table 9.1 and figure 9.1 for assay data and sample locations, respectively). Samples collected by the US Geological Survey in Clayton Valley had similar lithium content and values ranged from 100 ppm to 300pm. (Cannon, et al, 1975).

On August 9, 2016 the Author collected four verification samples as offsets within 10 feet of the previous sample sites, as discussed in Section 12 of this report. The August 9, 2016 samples verified the results of previous sampling.

Original laboratory certificates and Chain of Custody are included in Appendix B, Analytical Data.

7 Geological Setting and Mineralization

Sarcobatus Flat lies within the Basin and Range physiographic province. The province is characterized by north-south oriented mountain ranges formed by block-faulting that are separated by broad valleys. This province also includes the Great Basin which is the largest area of closed drainage basins in the United States.

The topography and geology of the Basin and Range province is the result of the extension and pulling apart of the North American Tectonic Plate. Mountain ranges have been uplifted along north-trending faults and valleys have dropped down. The rocks exposed in the mountain ranges consist of sedimentary, igneous and metamorphic rocks that range in age from Precambrian to Tertiary. The valleys are filled with younger (Quaternary and Tertiary aged) sediments which are often unconsolidated. Weathering and erosion have filled the valleys with alluvium and products of volcanism to depths of several thousand feet (Cannon, et al, 1975). Basins such as Sarcobatus Flat are filled with Pleistocene and Holocene sediments interbedded with volcanic tuffs.

Surrounding Sarcobatus Flat are the Stonewall Mountain to the northeast, Gold Mountain to the northwest and the Amargosa Range to the south. The bedrock of these uplifted areas surrounding the Flat consists in large part of volcanic tuff and ash that could be a source of an economic lithium brine resource. A similar geologic setting occurs in the Clayton Valley where lithium is produced from subsurface brines, as discussed herein.

7.1 Regional Geologic Setting

Figure 7.1 from USGS Professional Paper 918 (Cannon et al, 1975) shows the relative locations of Sarcobatus Flat, Clayton Valley, and other closed basins in the region. This USGS publication provides soil and vegetation samples from various sediments and plants collected within the closed basins and associated playas. Soil samples from Sarcobatus Flat ranged from 150 to 300 ppm Li as compared to Clayton Valley ranging from 100 to 500 ppm Li. As previously discussed in Section 6, recent soil samples conducted by Rainmaker at the Project have a similar range of 140 to 300 ppm Li with and average value of 233 ppm Li.

As shown on Table 7.1 lithium is preferentially concentrated in closed basins where water is discharged predominantly by evapotranspiration. Cyclic processes of wetting and drying in the arid environment present in the region has resulted in the concentration of salts, including lithium in brines and in sediments within the closed basins (Cannon et al, 1975).

As noted previously in Section 5, Climate, a ground water appraisal of the Sarcobatus Flat (Malmberg and Eakin, 1962) states that annual recharge to the basin is on the order of 3,500 acre feet as compared to some 3,000 acre feet of annual evapotranspiration. Of the total inflow an estimated 1,200 acre feet are from precipitation and the remaining 2,300 acre feet is from ground water underflow.

Table 7.1 Lithium Concentration in Closed and Open Basins (weight %)

Closed basins, discharged by evapotranspiration	
Amargosa Desert, Nye County, Nev., and Inyo County, Calif	0.15
Big Smoky Valley, Nye County, Nev	.01
Bristol Lake, San Bernardino County, Calif	.03
Clayton Valley, Esmeralda County, Nev	.05
Columbus Salt Marsh, Esmeralda County, Nev	.023
Death Valley, Inyo County, Calif	.03
Fourmile Flat, Churchill County, Nev	.007
Hector, Mohave Desert, San Bernardino County, Calif	.20
Oasis Valley, Nye County, Nev	.015
Owens Lake, Inyo County, Calif	.08
Railroad Valley, Nye County, Nev	.015
Sarcobatus Flat, Nye County, Nev	.03
Median	0.03

Open basins, discharged by underflow

Cactus Flat, Nye County, Nev	0.004
Dry Lake Valley, Clark County, Nev	.005
Frenchman Flat, Nye County, Nev	.015
Gold Flat, Nye County, Nev	.008
Kawich Valley, Nye County, Nev	.008
Silver Lake, San Bernardino County, Calif	.008
Stonewall Flat, Nye County, Nev	.007
Yucca Flat, Nye County, Nev	.007
Median	0.0075

Figure 7.2 from Stewart and Carlson, 1978, shows the geologic setting of the region including Sarcobatus Flat and the Clayton Valley. Both basins are similar in origin resulting from repetitive tectonic down-warping of the basins followed by erosion and deposition of sediments within the basins during Paleozoic and Mesozoic orogenies.

7.2 Geothermal Activity Sarcobatus Flat

Bradley et al, 2013, Davis et al, 1986 and others discuss the importance of igneous and/or geothermal activity as a key factor in the leaching of lithium of adjacent source rocks in the formation of lithium bearing brines within the playa environments. Figure 7.3 shows hydrothermal activity within and in the vicinity of Sarcobatus Flat (Penfield, et al , 2010).

Figure 7.3 shows a general area of thermal springs and wells along the eastern edge of Sarcobatus Flat. This area contains several warm springs (20-37° C) and one hot spring (> 37° C) in this area. In addition, a warm spring is known in the Grapevine Mountains to the west and a warm-water well to the north.

7.3 Lithium Source Rocks

Regionally, Tertiary volcanic rocks surrounding the closed basins are considered to be the likely source rock for lithium within salt brines within closed basins playas including the Clayton Valley (Davis et al, 1986). More recent research (Munk, 2011) concludes that the source rocks for the lithium brine deposits are a combination the Tertiary volcanic rocks surrounding the basins and lithium rich clays which formed in the ancient lake beds which formed from volcanic ash deposited in the basins. These potential source rocks, Tertiary volcanic and lacustrine deposits, are leached either by low temperature terrestrial waters, geothermal waters, or both then transported through the subsurface and concentrated through evapotranspiration in the playas (Munk, 2011).

7.4 Lithium Brines

Currently available data relative to lithium brines is limited to the Clayton Valley. USGS Bulletin 1622 (Davis et al, 1986) provides analytical data from 8 wells the Silver Peak mine ranging from 26 to 283 ppm Lithium. Additional data from the Silver Peak mine is generally not available as the company is privately held and thus not required to release data publicly. Additional analytical data is available from an adjacent property, the Clayton Valley South Project, Pure Energy Minerals. The Technical Report which states an inferred mineral resource for this project states average Lithium brine concentrations ranging from 37 to 370 ppm (Spanjers, 2015).

Data are not currently available for Sarcobatus Flat although according to their press release, July 20, 2016, Iconic Minerals is currently drilling within the playa adjacent to the Sarcobatus Project based on geophysical anomalies interpreted as representing potential Lithium brine aquifers.

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/264-drilling-program-initiated-at-bonnie-claire-lithium-project

Geophysical surveys (gravity) completed in the Sarcobatus Flat, by Iconic Mineral Ltd, adjacent to the Project, indicate that the valley fill sediments are 1,500 to 2,000 feet deep. These surveys are also reported to show a "Deeper Very Low Resistivity Layer, Possible Lithium Brine". The geophysical report has not been publicly released but according to the press release (June 20, 2016), two gently dipping low resistivity zones have been outlined that are interpreted to be brine reservoirs. These zones, which exhibit lateral continuity, are initially encountered at a depth of 200 meters (650 feet). From the cross section provided in the press release the low resistivity zones vary in aggregate thickness from 200 to 400 feet. Recently information was released on the first of three planned drill holes. The data released was form the drill hole in closest proximity to the Project and it reported to have a 350-foot-thick aquifer at a depth from 650 to 1,000 feet. The most recent press release by Iconic Minerals, September 9, 2016, reports that initial sampling has shown "Conductivity measurements of the brine samples are very encouraging."

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/263-finalgeophysical-report-defines-target-brine-and-additional-claims-staked-at-bonnie-claire-lithiumproject

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/265-iconicintercepts-high-conductivity-zone-at-bonnie-claire-lithium-property-nevada

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/269-iconicannounces-high-conductivity-in-initial-brine

8 Deposit Types

Lithium brine deposits result from the accumulation of saline groundwater. Typically, this occurs in closed structural sedimentary basins within arid environments. A preliminary geologic model for Lithium brine deposits has been proposed (Bradley et al, 2013). Figure 8.1 from Bradley et al, 2013, shows a schematic diagram of the geologic model. As detailed in Section 8, the Project located in Sarcobatus Flat reasonably conforms to this geologic model.

From Bradley et al, 2013

9 Exploration

9.1 Historical Exploration

The Project is a grassroots exploration project with no previous historical exploration. The mineral rights for the Project were acquired following geologic investigations based on the geologic model for Lithium Brines as suggested in USGS Open File report 2013-1006 (D. Bradley et al, 2013).

9.2 Current Exploration

Work done to date on the property consists of surface sampling with a hand-held auger conducted on June 29, 2016 and verification sampling completed on August 9, 2016 (refer to Section 12). Lithium content of the samples ranges from 140 ppm to 300 ppm and average 233 ppm. Samples collected by the US Geological Survey in Clayton Valley had similar lithium content and values ranged from 100 ppm to 300pm. (Cannon, et al, 1975).

The near surface Lithium assays from the Project are 5 to 14 times greater typical Lithium concentrations for sedimentary rocks; 17 ppm sandstones, 26 ppm limestones, and 4 ppm shales (Cannon et al, 1975).

The assays and location of samples are included in Table 9.1 and Figure 9.1, respectively.

Sarcobat	us Flat - Hand Au	ger Samples Collected 6/29/16
Sample No	Sample ID	LiPPM
1	BC0A	210
2	BC02	250
3	BC05	200
4	BC07	240
5	BC11	260
6	BC14	260
7	BC16	200
8	BC21	300
9	BC24	250
10	BC26	290
11	BC29	200
12	BC31	140
13	BC34	210
14	BC36	280
15	BC39	290
16	BC41	210
17	BC43	230
18	BC48	180
19	BC50	220
Total Samples		Average Li PPM
19		233

Table 9.1 Samples and Lithium Assays

Figure 9.7 Sample Location Map

9.3 Exploration Target Definition

The exploration model for Lithium brine deposits includes the following key geologic and climatological parameters (Bradley et al, 2013).

- 1. Arid climate
- 2. Closed basin containing a playa or salar
- 3. Tectonically driven subsidence
- 4. Associated igneous or geothermal activity
- 5. Suitable lithium source rocks
- 6. One or more adequate aquifers
- 7. Sufficient time to concentrate a brine

In comparison to these key parameters the geologic and climatological setting for the Project, as discussed in Sections 8 and 5, respectively, is summarized as follows:

- 1. Arid Climate: The average annual precipitation is approximately 6 inches annually.
- 2. *Closed basin containing a playa or salar:* Published reports state that Sarcobatus flat is a closed basin with the annual cumulative ground and surface water inflow of 3,500 acre feet roughly equivalent to the annual rate of evapotranspiration of 3,000 acre feet (Malmberg and Eakin, 1962).
- 3. *Tectonically driven subsidence:* The basin formation at Sarcobatus Flat as with other basins in the region are similar in origin resulting from repetitive tectonic down-warping of the basins followed by erosion and deposition of sediments within the basins during the Paleozoic and Mesozoic (Davis et al, 1986).
- 4. Associated igneous or geothermal activity: Geothermal springs and wells are known within Sarcobatus Flat particularly along the eastern margin (Penfield, et al, 2010).
- 5. Suitable lithium source rocks: Possible source rocks for the lithium brine deposits include both the volcanic rocks surrounding the basins and lithium rich clays which formed in the ancient lake beds (Munk, 2011). Published geologic mapping (Stewart and Carlson, 1978) shows Sarcobatus Flat to be surrounded by Rhyolitic volcanic and derived sediments. Soil samples from the Project have Lithium concentrations from 140 ppm to 300 ppm, refer to Section 6.
- 6. *One or more adequate aquifers:* Geophysical surveys competed on adjacent properties in Sarcobatus Flat indicate the presence of two potential aquifers (Iconic, 2016)
- 7. *Sufficient time to concentrate the brine:* The geologic history and age of the basin/playa at Sarcobatus Flat is similar to the Clayton Valley, 45 air miles to the NNW, which produces Lithium from brines.

9.4 Exploration Target Parameters

The key parameters and assumptions for the estimation of an Exploration Target for Lithium brines within the Project are as follows:

- 7. *Thickness of potential aquifers bearing Lithium brines.* The aquifer thickness range estimated from publicly available data (Iconic, 2016) is 200 to 400 feet. Drilling on adjacent claims showed a thickness of 350 feet which was applied.
- 8. *Porosity of the potential bearing Lithium brines*. Data from similar sedimentary sequences in Clayton Valley estimate total porosity at 34% (Spanjers, 2015). While CIM Best Practice Guidelines for Resource and Reserve Estimation for Lithium Brines,

November 1, 2012 would allow use of total porosity in the estimate of an Exploration Target, it has been asserted that the effective porosity rather than total porosity is more appropriate for mineral resource and reserve calculations (Kunasz, 2013). The Author concurs with this assessment and recommends use of the estimated drainage porosity rather than total porosity. Drainage porosities of medium grained sandstones and silts range from 27 to 20 %, respectively, (Brady and Kunkel, 2003) and the Author recommends use of this range of effective porosity for the estimation of an Exploration Target.

- 9. Aerial extent of the potential Lithium bearing aquifers: The Project consists of some total 4,680 acres which were located over the playa. For the purposes of estimating and Exploration Target the Author has assumed that the potential aquifers underlie approximately 80% of the total area or 3,744 acres.
- 10. Grade or concentration of Lithium in the brines: Publicly available data relative to concentrations of Lithium brines is limited to the Clayton Valley. Spanjers, 2015 states concentrations of Lithium in brines ranging from 37 to 370 ppm with a weighted average value of approximately 100 ppm. The reported Lithium concentrations vary by geographical location and depth with the weighted average values ranging from 60 to 150 ppm. For the purposes of estimating and Exploration Target the Author has estimated the Exploration Target at grade values of 60, 100, and 150 ppm reflecting low median and high ranges, respectively.
- 11. For the purposes of estimating and Exploration Target the Author has applied a unit weight of water of 62.43 pounds per cubic foot.
- 12. Analytical data is stated in ppm Lithium metal. The salable product is presumed to be Lithium Carbonate, Li₂CO₃ which by stoichiometric conversion is 5.32 times the Lithium metal content.

9.5 Exploration Target Estimate

Table 9.2 summarizes the Exploration Target for the Sarcobatus Flat Project based on the foregoing parameters. The range of the estimates varies relative to assumptions for grade and effective porosity. Area and aquifer thickness were assumed constant for this estimate.

Range	Aquifer Thickness (Feet)	Effective Porosity (%)	Area (Acres)	Grade Li (ppm)	Li2CO3* (Pounds x1,000)	Short Tons*
Low	350	0.20	3,744	60	227,000	113,500
	350	0.27	3,744	60	307,000	153,500
	350	0.20	3,744	100	379,000	189,500
	350	0.27	3,744	100	512,000	256,000
	350	0.20	3,744	150	569,000	284,500
High	350	0.27	3,744	150	768,000	384,000

 Table 9.2 Exploration Target Estimate

*Numbers rounded

The foregoing estimate of an Exploration Target for the Project is allowed as a restricted disclosure under NI 43-101 Part 2.3.2, which defines, disclosing the potential quantity and grade of mineralization, expressed as ranges, for further exploration. All tonnages, grade, and contained lithium, as stated in this report should not be construed to reflect a calculated mineral resource (inferred, indicated, or measured). The potential quantities and grades for exploration targets are conceptual in nature and there has been insufficient work to date to define a NI 43-101 compliant resource. Furthermore, it is uncertain if additional exploration will result in discovery of an economic mineral resource within these areas.

10 Drilling

•

No drilling has been completed on the property.

11 Sample Preparation, Analysis and Security

Sediment samples were collected in the field as per instructions by Chris Healey of RMR and Oren Gatten, of North American Mine Services, Inc., on June 29, 2016 and sealed in plastic bags. The samples were transported in a company truck to Kaysville, Utah and kept in possession of Mr. Gatten until they were shipped out via FedEx on June 30, 2016 to Western Environmental Testing Laboratory (WETLAB) in Sparks, Nevada. A chain of custody form was completed to accompany the samples. The laboratory is an independent contractor and is fully accredited and certified. WETLAB has industry standard quality control and assurance programs (QA/QC) in place.

The samples were analyzed for lithium, boron, magnesium and potassium. The analytical method used was ICP-AES (inductively coupled plasma – atomic emission spectrometry), after a standard trace metal digestion.

It is the author's opinion that the data provided by WETLAB are reliable and are sufficient for the purpose of this report.

12 Data Verification

Verification samples were taken by the Author during the site visit of August 9, 2016. The samples were collected, preserved and delivered to the same laboratory, WETLAB, that assayed the previous samples from the Project as described in Section 12. Table 12.1 provides a comparison of the original samples and the verification samples. The results were very consistent and corroborate the original sample data. The author concludes that the sample data available for the Project is reliable for the purposes of this project.

Original Sample	Li ppm	Verification Sample	Li ppm
BC21	300	21A	260
BC24	250	24A	290
BC26	290	26A	290
BC39	290	39A	290
Average	282.5		282.5

Table 12.1 Sample Verification

13-22 Sections Not Applicable to Exploration Target

23 Adjacent Properties

Albemarle Corp.'s Silver Peak lithium operation is located within Clayton Valley approximately 45 air miles (70 kilometers) NNW of the Project. Construction of production wells, a lithium carbonate production facility and an evaporation pond system began in 1964. Production commenced in 1967 and has continued essentially uninterrupted to present day. Lithium concentration and total production data for this facility is not well known, as proprietary production figures are not available publicly. Refer to Figures 7.1 and 7.2.

Iconic Minerals Ltd. has located mining claims immediately to the east and south of the Project. Iconic Minerals has completed geophysical surveys and drilling immediately adjacent to the Project. Data released by Iconic is discussed in Section 9.

Mineral claims immediately adjacent to the Sarcobatus Project are shown on Figure 23.1.

Figure 23.8 Adjacent Claims Map

24 Other Relevant Data and Information

To the Author's knowledge, there is no other relevant data or information that relates to the project.

25 Interpretation and Conclusions

The author considers the data available to be reliable for the purposes of this report. There is a risk that additional exploration will not result in discovery of an economic mineral lithium brine resource within the project area.

In addition, the Project does have risks that are similar in nature to other mineral exploration projects in general and lithium exploration projects specially, i.e., risks common to exploration and mining projects include:

- * future commodity demand and pricing;
- * environmental and political acceptance of the project;
- * variance in capital and operating costs;
- * mine and mineral processing recovery;

The project area reasonably conforms to the Preliminary Deposit Model for Lithium Brines as developed by the US Geological Survey (Bradley, et al, 2013). Exploration data reported from the adjacent Iconic Mineral property has reportedly yielded favorable results however, similar data is not available on the Project.

26 Recommendations

It is recommended that exploration and development of the Sarcobatus Flat project be continued and that exploration be conducted in phases with each successive phase being dependent upon the results of the previous phase.

- Phase 1 Conduct gravity geophysical surveys
 - Estimated cost US\$50,000.
- Phase 2 Conduct Controlled Source Audio-frequency Magnetotellurics (CSAMT) geophysical surveys.
 - o Estimated costs US\$ 75,000.
- Phase 3 Initial drilling to determine presence or absence of lithium brines.
 - Estimate 3 drill holes at 1,500 feet depth
 - Estimated cost per hole including drilling, on-site geologist, and hydrological testing, water sampling, and analyses; US\$200,000 each.
 - Estimated cost US\$ 600,000.
- Phase 4 Conceptual engineering study and reservoir analysis.
 - Estimated cost US\$50,000.
- Phase 5 Follow-up Drilling
 - Estimate 7 drill holes at 1,500 feet depth
 - Estimated cost per hole including drilling, on-site geologist, and hydrological testing, water sampling, and analyses; US\$200,000 each.
 - Estimated cost US\$ 1,400,000.
- Phase 6 Mineral Resource Estimation and Preliminary Economic Assessment (PEA)
 o Estimated cost US\$200,000.
- Total Estimated Cost UD\$2,375,000

Sampling and analysis of sedimentary units and encountered groundwater aquifers should be accomplished during the drilling. Drill cuttings should be collected for each five-foot (1.5 meter) interval drilled. Samples should be packaged and labeled according to a predetermined sample labeling plan. Discreet samples of water from each water-bearing unit should be collected, stored and labeled. The plan should also include the insertion of quality control and quality assurance samples for both solids and ground water sample sets and should include field blanks, field duplicates and standards. Once packaged and labeled, samples should be delivered to the selected project laboratory for analysis under chain-of-custody procedures to ensure sample integrity.

Depending upon the results of the drilling and sampling program, aquifer testing and hydrogeological studies should be completed to determine the characteristics of any lithiumbearing aquifers underlying the property. Variables such as porosity, specific yield, permeability, brine volume, aquifer geometry and chemical composition all must be determined in order to demonstrate the feasibility of economic extraction of the lithium-bearing brines. Pumping tests conducted over an extended period of time will be necessary to determine aquifer parameters and characteristics.

27 References

Bradley, D., et al, A Preliminary Deposit Model for Lithium Brines: US Geological Survey OFR 2013-1006, 5 p.

Cannon, H.L., Harms, T.F., and Hamilton, C. 1975, Lithium in Unconsolidated Sediments and Plants of the Basin and Range Province, Southern California and Nevada: US Geological Survey Professional Paper 918, 30 p.

Cornwall, H. R., 1972, Geology and Mineral Deposits of Southern Nye County, Nevada: Nevada Bureau of Mines and Geology Bull 77, 49.

Kunasz, I.A., 1974, Lithium Occurrence in the Brines of Clayton Valley, Esmeralda County, Nevada, in Proceedings of the Fourth Symposium on Salt - Northern Ohio Geological Survey, pp. 57-66.

Pantea, M.P., Asher-Bolinder, S., and Vine, J.D., 1981, Lithology and Lithium Content of Sediments in Basins Surrounding Clayton Valley, Esmeralda and Nye Counties, Nevada: US Geological Survey OFR 81-962.

Pantea, M.P. and Asher-Bolinder, S., 1982, Lithologic Log and Lithium Content of Sediments in Clayton Valley, Esmeralda County, Nevada: US Geological Survey OFR 82-415.

Price, J.G., Lechler, P.J., Lear, M.B., and Giles, T.F., 2000, Possible Volcanic Source of Lithium in Brines in Clayton Valley, Nevada, in Cluer, J.K. Price, J.G., Struhsacker, E.M., Hardyman, R.F, and Morris, C.L., eds., Geology and Ore Deposits 2000: the Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, May 15-18, 2000, Reno, p. 241-248.

Vine, J.D., 1980. Where in the World is all the Lithium? US Geological Survey OFR 80-1234, 107 p.

Zampirro, D., 2003, Hydrogeology of Clayton Valley Brine Deposits, Esmeralda County, Nevada Bureau of Mines and Geology Special Publication 33, p. 271-280

http://www.nevadamining.org/issues_policy/taxation.php

https://en.wikipedia.org/wiki/Goldfield,_Nevada http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/264-drillingprogram-initiated-at-bonnie-claire-lithium-project

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/263-finalgeophysical-report-defines-target-brine-and-additional-claims-staked-at-bonnie-claire-lithiumproject

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/265-iconicintercepts-high-conductivity-zone-at-bonnie-claire-lithium-property-nevada

http://www.iconicmineralsltd.com/index.php/news-disclosure/company-news/269-iconicannounces-high-conductivity-in-initial-brine

28 Date and Signature Page SIGANTURE PAGE AND CERTIFICATE OF QUALIFIED PERSON

DOUGLAS L. BEAHM

I, Douglas L. Beahm, P.E., P.G., do hereby certify that:

- 1. I am the Principal Engineer and President of BRS, Inc., whose main office is located at 1130 Major Avenue, Riverton, Wyoming 82501.
- 2. I am the author of the report titled "Sarcobatus Flat Lithium Brine Project, Exploration Target, NI 43-101 Technical Report" with an effective date of November 1, 2016.
- 3. I graduated with a Bachelor of Science degree in Geological Engineering from the Colorado School of Mines in 1974. I am a licensed Professional Engineer in Wyoming, Colorado, Utah, and Oregon; a licensed Professional Geologist in Wyoming; and Registered Member of the SME.
- 4. I have worked as an engineer and a geologist associated with the mineral industry for over 40 years. Relevant work experience includes: mineral exploration, conventional and in situ recovery mine production, and mine/mill decommissioning and reclamation. Relevant commodity experience includes: epigenetic and syngenetic sedimentary hosted mineral deposits, evaporate deposits, and rare earth deposits.
- 5. I was last present at the site on August 9, 2016.
- 6. I am responsible for the entirety of the report.
- 7. I am independent of the issuer applying all of the tests in NI 43-101.
- 8. I do not have previous work experience on the project.
- 9. I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of my education, professional registration, and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with same.
- 11. As of the date of this report, to the best of my knowledge, information and belief, the parts of the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 12. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority.

November 1, 2016 Signed and Sealed

Douglas L. Beahm

Appendix A – Mineral Claims

Rainmaker Placer Claims:

Bonnie Claims									
Claim Name	BLM Serial No	Location Date	Claim Name	BLM Serial No	Location Date	Claim Name		Location Date	
Bonnie 1	NMC1119797	12/21/2015	Bonnie 22	NMC1119813	12/21/2015	Bonnie 40	NMC1119830	12/21/2015	
Bonnie 2	NMC1119798	12/21/2015	Bonnie 23	NMC1119814	12/21/2015	Bonnie 41	NMC1119831	12/21/2015	
Bonnie 3	NMC1119799	12/21/2015	Bonnie 24	NMC1119815	12/21/2015	Bonnie 42	NMC1119832	12/21/2015	
Bonnie 4	NMC1119800	12/21/2015	Bonnie 25	NMC1119816	12/21/2015	Bonnie 43	NMC1119833	12/21/2015	
Bonnie 5	NMC1119801	12/21/2015	Bonnie 26	NMC1119817	12/21/2015	Bonnie 44	NMC1119834	12/21/2015	
Bonnie 9	NMC1119802	12/21/2015	Bonnie 28	NMC1119819	12/21/2015	Bonnie 46	NMC1119836	12/21/2015	
Bonnie 10	NMC1119803	12/21/2015	Bonnie 30	NMC1119820	12/21/2015	Bonnie 47	NMC1119837	12/21/2015	
Bonnie 11	NMC1119804	12/21/2015	Bonnie 31	NMC1119821	12/21/2015	Bonnie 48	NMC1119838	12/21/2015	
Bonnie 12	NMC1119805	12/21/2015	Bonnie 32	NMC1119822	12/21/2015	Bonnie 49	NMC1119839	12/21/2015	
Bonnie 13	NMC1119806	12/21/2015	Bonnie 33	NMC1119823	12/21/2015	Bonnie 50	NMC1119840	12/21/2015	
Bonnie 14	NMC1119807	12/21/2015	Bonnie 34	NMC1119824	12/21/2015	Bonnie 51	NMC1119841	12/21/2015	
Bonnie 15	NMC1119808	12/21/2015	Bonnie 35	NMC1119825	12/21/2015	Bonnie 52	NMC1119842	12/21/2015	
Bonnie 16	NMC1119809	12/21/2015	Bonnie 36	NMC1119826	12/21/2015	Bonnie 53	NMC1119843	12/21/2015	
Bonnie 19	NMC1119810	12/21/2015	Bonnie 37	NMC1119827	12/21/2015	Bonnie 54	NMC1119844	12/21/2015	
Bonnie 20	NMC1119811	12/21/2015	Bonnie 38	NMC1119828	12/21/2015				
Bonnie 21	NMC1119812	12/21/2015	Bonnie 39	NMC1119829	12/21/2015				

BC Claims								
Claim Name	BLM Serial No	Location Date	Claim Name	BLM Serial No	Location Date	Claim Name	BLM Serial No	Location Date
BC 1	NMC1130000	6/21/2016	BC 63	NMC1130062	6/21/2016	BC 125	NMC1130124	6/22/2016
BC 2	NMC1130001	6/21/2016	BC 64	NMC1130063	6/21/2016	BC 126	NMC1130125	6/22/2016
BC 3	NMC1130002	6/21/2016	BC 65	NMC1130064	6/21/2016	BC 127	NMC1130126	6/22/2016
BC 4	NMC1130003	6/21/2016	BC 66	NMC1130065	6/21/2016	BC 128	NMC1130127	6/22/2016
BC 5	NMC1130004	6/21/2016	BC 67	NMC1130066	6/21/2016	BC 129	NMC1130128	6/22/2016
BC 6	NMC1130005	6/21/2016	BC 68	NMC1130067	6/21/2016	BC 130	NMC1130129	6/22/2016
BC 7	NMC1130006	6/21/2016	BC 69	NMC1130068	6/21/2016	BC 131	NMC1130130	6/22/2016
BC 8	NMC1130007	6/21/2016	BC 70	NMC1130069	6/21/2016	BC 132	NMC1130131	6/22/2016
BC 9	NMC1130008	6/21/2016	BC 71	NMC1130070	6/21/2016	BC 133	NMC1130132	6/22/2016
BC 10	NMC1130009	6/21/2016	BC 72	NMC1130071	6/21/2016	BC 134	NMC1130133	6/22/2016
BC 11	NMC1130010	6/21/2016	BC 73	NMC1130072	6/21/2016	BC 135	NMC1130134	6/22/2016
BC 12	NMC1130011	6/21/2016	BC 74	NMC1130073	6/21/2016	BC 136	NMC1130135	6/22/2016
BC 13	NMC1130012	6/21/2016	BC 75	NMC1130074	6/21/2016	BC 137	NMC1130136	6/22/2016
BC 14	NMC1130013	6/21/2016	BC 76	NMC1130075	6/21/2016	BC 138	NMC1130137	6/22/2016
BC 15	NMC1130014	6/21/2016	BC 77	NMC1130076	6/21/2016	BC 139	NMC1130138	6/22/2016
BC 16	NMC1130015	6/21/2016	BC 78	NMC1130077	6/21/2016	BC 140	NMC1130139	6/22/2016
BC 17	NMC1130016	6/21/2016	BC 79	NMC1130078	6/21/2016	BC 141	NMC1130140	6/22/2016
BC 18	NMC1130017	6/21/2016	BC 80	NMC1130079	6/21/2016	BC 142	NMC1130141	6/22/2016
BC 19	NMC1130018	6/21/2016	BC 81	NMC1130080	6/21/2016	BC 143	NMC1130142	6/22/2016
BC 20	NMC1130019	6/21/2016	BC 82	NMC1130081	6/21/2016	BC 144	NMC1130143	6/22/2016
BC 21	NMC1130020	6/21/2016	BC 83	NMC1130082	6/21/2016	BC 145	NMC1130144	6/22/2016
BC 22	NMC1130021	6/21/2016	BC 84	NMC1130083	6/21/2016	BC 146	NMC1130145	6/22/2016
BC 23	NMC1130022	6/21/2016	BC 85	NMC1130084	6/21/2016	BC 147	NMC1130146	6/22/2016
BC 24	NMC1130023	6/21/2016	BC 86	NMC1130085	6/21/2016	BC 148	NMC1130147	6/22/2016
BC 25	NMC1130024	6/21/2016	BC 87	NMC1130086	6/21/2016	BC 149	NMC1130148	6/22/2016
BC 26	NMC1130025	6/21/2016	BC 88	NMC1130087	6/21/2016	BC 150	NMC1130149	6/22/2016
BC 27	NMC1130026	6/21/2016	BC 89	NMC1130088	6/21/2016	BC 151	NMC1130150	6/22/2016
BC 28	NMC1130027	6/21/2016	BC 90	NMC1130089	6/21/2016	BC 152	NMC1130151	6/22/2016
BC 29	NMC1130028	6/21/2016	BC 91	NMC1130090	6/21/2016	BC 153	NMC1130152	6/22/2016
BC 30	NMC1130029	6/21/2016	BC 92	NMC1130091	6/21/2016	BC 154	NMC1130153	6/22/2016
BC 31	NMC1130030	6/21/2016	BC 93	NMC1130092	6/21/2016	BC 155	NMC1130154	6/22/2016
BC 32	NMC1130031	6/21/2016	BC 94	NMC1130093	6/21/2016	BC 156	NMC1130155	6/22/2016
BC 33	NMC1130032	6/21/2016	BC 95	NMC1130094	6/21/2016	BC 157	NMC1130156	6/22/2016

BC 34	NMC1130033	6/21/2016	BC 96	NMC1130095	6/21/2016	BC 158	NMC1130157	6/22/2016
BC 35	NMC1130034	6/21/2016	BC 97	NMC1130096	6/21/2016	BC 159	NMC1130158	6/22/2016
BC 36	NMC1130035	6/21/2016	BC 98	NMC1130097	6/21/2016	BC 160	NMC1130159	6/22/2016
BC 37	NMC1130036	6/21/2016	BC 99	NMC1130098	6/21/2016	BC 161	NMC1130160	6/22/2016
BC 38	NMC1130037	6/21/2016	BC 100	NMC1130099	6/21/2016	BC 162	NMC1130161	6/22/2016
BC 39	NMC1130038	6/21/2016	BC 101	NMC1130100	6/22/2016	BC 163	NMC1130162	6/22/2016
BC 40	NMC1130039	6/21/2016	BC 102	NMC1130101	6/22/2016	BC 164	NMC1130163	6/22/2016
BC 41	NMC1130040	6/21/2016	BC 103	NMC1130102	6/22/2016	BC 165	NMC1130164	6/22/2016
BC 42	NMC1130041	6/21/2016	BC 104	NMC1130103	6/22/2016	BC 166	NMC1130165	6/22/2016
BC 43	NMC1130042	6/21/2016	BC 105	NMC1130104	6/22/2016	BC 167	NMC1130166	6/22/2016
BC 44	NMC1130043	6/21/2016	BC 106	NMC1130105	6/22/2016	BC 168	NMC1130167	6/22/2016
BC 45	NMC1130044	6/21/2016	BC 107	NMC1130106	6/22/2016	BC 169	NMC1130168	6/22/2016
BC 46	NMC1130045	6/21/2016	BC 108	NMC1130107	6/22/2016	BC 170	NMC1130169	6/22/2016
BC 47	NMC1130046	6/21/2016	BC 109	NMC1130108	6/22/2016	BC 171	NMC1130170	6/22/2016
BC 48	NMC1130047	6/21/2016	BC 110	NMC1130109	6/22/2016	BC 172	NMC1130171	6/22/2016
BC 49	NMC1130048	6/21/2016	BC 111	NMC1130110	6/22/2016	BC 173	NMC1130172	6/22/2016
BC 50	NMC1130049	6/21/2016	BC 112	NMC1130111	6/22/2016	BC 174	NMC1130173	6/22/2016
BC 51	NMC1130050	6/21/2016	BC 113	NMC1130112	6/22/2016	BC 175	NMC1130174	6/22/2016
BC 52	NMC1130051	6/21/2016	BC 114	NMC1130113	6/22/2016	BC 176	NMC1130175	6/22/2016
BC 53	NMC1130052	6/21/2016	BC 115	NMC1130114	6/22/2016	BC 177	NMC1130176	6/22/2016
BC 54	NMC1130053	6/21/2016	BC 116	NMC1130115	6/22/2016	BC 178	NMC1130177	6/22/2016
BC 55	NMC1130054	6/21/2016	BC 117	NMC1130116	6/22/2016	BC 179	NMC1130178	6/22/2016
BC 56	NMC1130055	6/21/2016	BC 118	NMC1130117	6/22/2016	BC 180	NMC1130179	6/22/2016
BC 57	NMC1130056	6/21/2016	BC 119	NMC1130118	6/22/2016	BC 181	NMC1130180	6/22/2016
BC 58	NMC1130057	6/21/2016	BC 120	NMC1130119	6/22/2016	BC 182	NMC1130181	6/22/2016
BC 59	NMC1130058	6/21/2016	BC 121	NMC1130120	6/22/2016	BC 183	NMC1130182	6/22/2016
BC 60	NMC1130059	6/21/2016	BC 122	NMC1130121	6/22/2016	BC 184	NMC1130183	6/22/2016
BC 61	NMC1130060	6/21/2016	BC 123	NMC1130122	6/22/2016	BC 185	NMC1130184	6/22/2016
BC 62	NMC1130061	6/21/2016	BC 124	NMC1130123	6/22/2016	BC 186	NMC1130185	6/22/2016

Appendix B – Analytical Data

www.WETLaboratory.com

Specializing in Soil, Hazardous Waste and Water Analysis

7/12/2016

Rainmaker Resources, Ltd. 15th Street, Suite 300, 235 West Vancouver, BC CAN V7T 2X1 Attn: Chris Healey OrderlD: 1607049

Dear: Chris Healey

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 7/5/2016. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

nete 23

Andy Smith QA Manager

 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0817

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 1 of 8

Western Environmental Testing Laboratory **Report Comments**

Rainmaker Resources, Ltd. - 1607049

Specific Report Comments

None

Report Legend

В	-	Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	-	Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	-	Sample analyzed beyond the accepted holding time
1	-	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
М		The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance eriteria due to probable matrix interference. The reported result should be considered an estimate.
N	æ	There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	-	Not calculated due to matrix interference
QD	-	The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	-	The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
8	-	Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC		Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
C	-	The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B: A result of zero (0) indicates absence for both colliform and Escherichia colli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolvec Oxygen, Sulfite.

SPARKS SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 2 of 8

Rainmaker Resources, Ltd. - 1607049

Western Environmental Testing Laboratory Analytical Report

 Rainmaker Resources, Ltd.

 15th Street, Suite 300, 235

 West Vancouver, BC CAN V7T 2X1

 Attn:
 Chris Healey

 Phone:
 1(778) 996-1810
 Fax:

PO\Project: SC

roardon pe								
Customer Sample ID:	BC0A				Collect I) ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-001				Rec	eive Date:	7/5/2016 12:00	
nie w nie Nie								
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	58	me/ke	49,88	5.0	7/11/2016	NV00925
Lithium		SW846 6010B	210	mg/kg	49,88	5.0	7/11/2016	NV00925
Magnesium		SW846 6010B	13000	ng/kg	49.88	25	7/11/2016	NV00925
Potassium		SW846 6010B	7600 SC	mg/kg	49.88	25	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		Ĵ		7/8/2016	NV00925
Customer Sample ID:	BC02				Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-002				Rec	eive Date:	7/5/2016 12:00	
74								
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	67	mg/kg	48.73	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	250	mg/kg	48.73	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	13000	mg/kg	48.73	24	7/11/2016	NV00925
Potassium		SW846 6010B	9600	mg/kg	48.73	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC05				Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-003				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RI.	Analyzed	LabID
	op. o p.o.				88.	000		
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	57	mg/kg	48.94	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	200	mg/kg	48.94	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	12000	mg/kg	48.94	24	7/11/2016	NV00925
Potassium		SW846 6010B	8100	mg/kg	48.94	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

Page 3 of 8

LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Date Printed: 7/12/2016

OrderID:

1607049

Customer Sample ID:	BC07				Collect E	ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-004				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	56	mg/kg	49.92	5.0	7/11/2016	NV00925
Lithium		SW846 6010B	240	mg/kg	49.92	5.0	7/11/2016	NV00925
Magnesium		SW846 6010B	13000	mg/kg	49.92	25	7/11/2016	NV00925
Potassium		SW846 6010B	9000	mg/kg	49.92	25	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC11		24		Collect D	ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-005				Rec	eive Date:	7/5/2016 12:00	
-							0204040346 0403460	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
<u>Trace Metals (Soil) by I</u>	CP-OES							
Boron		SW846 6010B	78	mg/kg	46.79	4.7	7/11/2016	NV00925
Lithium		SW846 6010B	260	mg/kg	46.79	4.7	7/11/2016	NV00925
Magnesium		SW846 6010B	13000	mg/kg	46.79	23	7/11/2016	NV00925
Potassium		SW846 6010B	10000	mg/kg	46.79	23	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC14				Collect D	ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-006				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	120	me/ke	49,49	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	260	me/ke	49,49	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	14000	me/ke	49,49	25	7/11/2016	NV00925
Potassium		SW846 6010B	10000	mg/kg	49.49	25	7/11/2016	NV00925
Sample Preparation				1				
Trace Metals Digestion		EPA 3050B	Complete		ĩ		7/8/2016	NV00925
Customer Sample ID:	BC16	na kana dan Ali Gundan (2011)	1.51.9557. • HSL753		Collect T	ate/Time:	6/29/2016	ere ernedzenek
VETI AD Come la ID	1607040-007				Concet L	oivo Deter	7/5/2014 12/20	
AFTERP saubie ID:	1007049-007				Kec	eive Date:	1/5/2010 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
<u>Trace Metals (Soil) by I</u>	CP-OES							
Boron		SW846 6010B	160	mg/kg	49.98	5.0	7/11/2016	NV00925
Lithium		SW846 6010B	200	mg/kg	49.98	5.0	7/11/2016	NV00925
Magnesium		SW846 6010B	12000	mg/kg	49,98	25	7/11/2016	NV00925
Potassium		SW846 6010B	9600	mg/kg	49,98	25	7/11/2016	NV00925
Sample Preparation								
Trans Motals Disastics		EPA 3050P	Consists		1		7/8/2014	N.V/00025
Trace Metals Digestion		EPA 3050B	Complete		Ĵ		7/8/2016	NV

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

Customer Sample ID:	BC21				Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-008				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	75	me/ke	47.52	4.8	7/11/2016	NV00925
Lithium		SW846 6010B	300	mg/kg	47.52	4.8	7/11/2016	NV00925
Magnesium		SW846 6010B	12000	ne/ke	47.52	24	7/11/2016	NV00925
Potassium		SW846 6010B	9900	mg/kg	47.52	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC24		22		Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-009				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	150	mg/kg	47.41	4.7	7/11/2016	NV00925
Lithium		SW846 6010B	250	mg/kg	47.41	4.7	7/11/2016	NV00925
Magnesium		SW846 6010B	12000	mg/kg	47.41	24	7/11/2016	NV00925
Potassium		SW846 6010B	10000	mg/kg	47.41	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC26				Collect I)ate/Time:	6/29/2016	
VETLAB Sample ID:	1607049-010				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	100	me/ke	49.44	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	290	me/ke	49.44	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	14000	me/ke	49,44	25	7/11/2016	NV00925
Potassium		SW846 6010B	11000	mg/kg	49.44	25	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC29				Collect I	Date/Time:	6/29/2016	
NETLAB Sample ID:	1607049-011				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron	1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	SW846 6010B	360	rue/ke	48.14	4.8	7/11/2016	NV00925
Lithium		SW846 6010B	200	me/ke	48.14	4.8	7/11/2016	NV00925
Magnesium		SW846 6010B	12000 SC	mg/ke	48.14	24	7/11/2016	NV00925
Potassium		SW846 6010B	10000 SC	nig/kg	48.14	24	7/11/2016	NV00925
Sample Preparation		n and a state of the	40000000 80000	0-0	CASESIOL	1000	1	
Sample Lichararion		2021 02220475	2.2 0		23		<u></u>	
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
DF=Dilution Factor, RL	.=Reporting Lim	il, ND=Not Detected or	<rl< td=""><td></td><td></td><td></td><td>Pa</td><td>ge 5 of 8</td></rl<>				Pa	ge 5 of 8
SDAD	SPARKS					ACVE	CAC	

 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0817

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

Customer Sample ID:	BC31				Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-012				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by IG	CP-OES							
Boron		SW846 6010B	460	mo/ko	49.04	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	140	ne/ke	49,04	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	7300	nie/ke	49.04	25	7/11/2016	NV00925
Potassium		SW846 6010B	7700	nie/ke	49.04	25	7/11/2016	NV00925
Sample Preparation				0 0				
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Suctomer Semple ID:	DC 24		â		Collect T	oto/Time:	6/20/2016	
Justomer Sample ID.	10054				Conecci	vate/1 mie.	5/29/2010	
VETLAB Sample ID:	1607049-013				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	CP-OES							
Boron		SW846 6010B	280	mg/kg	47.28	4.7	7/11/2016	NV00925
Lithium		SW846 6010B	210	mg/kg	47.28	4.7	7/11/2016	NV00925
Magnesium		SW846 6010B	12000	mg/kg	47.28	24	7/11/2016	NV00925
Potassium		SW846 6010B	9600	mg/kg	47.28	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		ī		7/8/2016	NV00925
Customer Sample ID:	BC36				Collect I)ate/Time:	6/29/2016	
VETLAB Sample ID:	1607049-014				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by IC	CP-OES							
Boron		SW846 6010B	110	mg/kg	48.95	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	280	mg/kg	48.95	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	13000	mg/kg	48.95	24	7/11/2016	NV00925
Potassium		SW846 6010B	10000	mg/kg	48.95	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		ĩ		7/8/2016	NV00925
Customer Sample ID:	BC39				Collect I	ate/Time:	6/29/2016	
• WETLAB Sample ID:	1607049-015				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by IO	CP-OES							
Boron		SW846 6010B	110	me/ke	47	4.7	7/11/2016	NV00925
Lithium		SW846 6010B	290	nie/ke	47	4.7	7/11/2016	NV00925
Magnesium		SW846 6010B	14000	mg/kg	47	23	7/11/2016	NV00925
Potassium		SW846 6010B	9800	mg/kg	47	23	7/11/2016	NV00925
Sample Preparation								
Sample I Tep at actors			6				2002014	
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
DE-Dilution Faster Df	-Pananting fim	it ND=Not Detected on	<d1< td=""><td></td><td></td><td></td><td>De</td><td>on 6 of 8</td></d1<>				De	on 6 of 8
DF=Dilution Factor, RI.	Reporting Lim.	it, ND=Not Detected or	<rl< td=""><td></td><td></td><td></td><td>Pa</td><td>gc 6 of 8</td></rl<>				Pa	gc 6 of 8

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

Customer Sample ID:	BC41				Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-016				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by I	ICP-OES							
Boron		SW846 6010B	830	mg/kg	49.84	5.0	7/11/2016	NV00925
Lithium		SW846 6010B	210	mg/kg	49.84	5.0	7/11/2016	NV00925
Magnesium		SW846 6010B	9400	mg/kg	49.84	25	7/11/2016	NV00925
Potassium		SW846 6010B	10000	mg/kg	49.84	25	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC43				Collect I	Date/Time:	6/29/2016	
WETLAB Sample ID:	1607049-017				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by J	ICP-OES							
Boron		SW846 6010B	200	mg/kg	45.91	4.6	7/11/2016	NV00925
Lithium		SW846 6010B	230	mg/kg	45.91	4.6	7/11/2016	NV00925
Magnesium		SW846 6010B	11000	mg/kg	45.91	23	7/11/2016	NV00925
Potassium		SW846 6010B	9400	mg/kg	45.91	23	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		ī		7/8/2016	NV00925
Customer Sample ID:	BC48				Collect I)ate/Time:	6/29/2016	
WETLAB Sample ID:	1607049-018				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by 1	ICP-OES							
Boron		SW846 6010B	200	me/ke	48.91	4.9	7/11/2016	NV00925
Lithium		SW846 6010B	180	me/ke	48.91	4.9	7/11/2016	NV00925
Magnesium		SW846 6010B	11000	mg/kg	48.91	24	7/11/2016	NV00925
Potassium		SW846 6010B	10000	mg/kg	48.91	24	7/11/2016	NV00925
Sample Preparation								
Trace Metals Digestion		EPA 3050B	Complete		1		7/8/2016	NV00925
Customer Sample ID:	BC50				Collect I	Date/Time:	6/29/2016	
WETLAB Sample ID:	1607049-019				Rec	eive Date:	7/5/2016 12:00	
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil) by 1	ICP-OES							
Boron		SW846 6010B	190	mg/kg	46.45	4.6	7/11/2016	NV00925
Lithium		SW846 6010B	220	mg/kg	46.45	4.6	7/11/2016	NV00925
Magnesium		SW846 6010B	12000	mg/kg	46.45	23	7/11/2016	NV00925
Potassium		SW846 6010B	9800	mg/kg	46.45	23	7/11/2016	NV00925
Sample Preparation								
		EPA 3050B	Complete		1		7/8/2016	NV00925
Trace Metals Digestion		DADEAS CONTRACTOR	POINT DE LA CALVANDA					

 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0817

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

Western Environmental Testing Laboratory QC Report

QCBatchID QCTy	уре	Parameter	Method	ļ i	Result	Units						
QC16070362 Bla	nk 1	Boron	SW846	6010B	ND	mg/kg						
		Lithium	SW846	6010B	ND	mg/kg						
		Magnesium	SW846	6010B	ND	mg/kg						
		Potassium	SW846	6010 B	ND	mg/kg						
QC16070363 Bla	nk 1	Boron	SW846	6010 B	ND	mg/kg						
		Lithium	SW846	6010 B	ND	mg/kg						
		Magnesium	SW846	6010 B	ND	mg/kg						
		Potassium	SW846	6010B	ND	mg/kg						
QCBatchID QCTy	уре	Parameter	Method	L j	Result	Actual	% Re	covery	Unit	1		
QC16070362 LCS	S 1	Boron	SW846	6010B	45.6	50.0	91		mg/	kg		
		Lithium	SW846	6010B	49.5	50.0	99		mg/	kg		
		Magnesium	SW846	6010 B	499	500	100		mg/	kg		
		Potassium	SW846	6010B	484	500	97		mg/	kg		
QC16070363 LCS	S 1	Boron	SW846	6010 B	45.6	50.0	91		nıg/	kg		
		Lithium	SW846	6010 B	49.5	50.0	99		mg/	kg		
		Magnesium	SW846	6010 B	499	500	1.00		mg/	kg		
		Potassium	SW846	6010 B	484	500	97		mg/	kg		
QCBatchID QCTy	ype Pa	rameter	Method	Spike Sample	Sample Result	MS Result	MSD Result	Spike Value	Units	MS % Rec.	MSD % Rec.	RPI
QC16070362 MS	1 Bo	oron	SW846 6010B	1607049-001	58.2	101	104	50.0	nıg/kg	86	92	3%
	Li	thium	SW846 6010B	1607049-001	209	251	246	50.0	mg/kg	84	74	2%
	М	agnesium	SW846 6010B	1607049-001	12900	13500	13600	500	mg/kg	120	140	1%
	Pa	tassium	SW846 6010B	1607049-001	7640	SC 8370	8550	500	mg/kg	NC	NC	NC
QC16070363 MS	1 Bo	oron	SW846 6010B	1607049-011	355	410	429	50.0	mg/kg	110	148	5%
	Li	thium	SW846 6010B	1607049-011	198	242	236	50.0	mg/kg	88	76	3%
	М	agnesium	SW846 6010B	1607049-011	12500	SC 13400	13300	500	mg/kg	NC	NC	NC
	Po	tassium	SW846 6010B	1607049-011	10100	SC 11000	11200	500	me/ke	NC	NC	NC

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0217

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 Page 8 of 8

475 E. Gree Street #119 I. Se	arks, Nevad	a 894	azardous VVa 31 I www.Wi	ETLabor	atory	com	nalys	s.	Elk	o Cor	ntrol #_				
tel (775) 355-0202 I fa	(775) 355	0817		- Lawy					LV	Cont	rol #	-	-	,	
1084 Lamoille Highway I Ell tel (775) 777-9933 I fa	ko, Nevada 8 k (775) 777	99801 9933							Du	e Dat	e	1-1	2-1	6	
3230 Polaris Ave., Suite 4 La tel (702) 475-8899 fa	s Vegas, Ne	vada 8	9102						Pa	ne 1		ort	20	Ø	6
Client Rainmaker Reso	urces Lto	1								Turna	round T	ime Requ	irements		
Address Suite 300, 235 - 15th Str	eet							5 Day" (25%)	St	indard	72 Hour	. (50%)	Г	٦
City State & Zin West Vancouver, B	C CAN V	7T 2	X1					48 Hour	(100%	,]	24 Hour	· (200%)		<u> </u>
Contact Chris Healey								Samp	les Co	llected State?	From	Jos vill A	Report	Results	Via
Bhase (778) 996-1810	Collecte	vie Ne	oren O	Gatter			-1	N	Other	CA L			_		_
Env	DWD	n o Ne	Nama SC				-	Com	pliance	Monit	oring?	- F	, Excel	EDD	<u></u>
PO Number	PWS/P	oject	Number				+	Report	to Regu	latory	Agency	S	tandard (QC Req	uired?
P.O. Number	PWS/P	roject	Number			s N	0.	Yes		Ana	lyses	Requ	ested	N	•
Billing Address (if differe	ent than Cl	lient /	Address)		-)	4 0	F	T	Γ		Π	T			T
Company					1	1	5								
Address							4								
City, State & Zip					. 1	= ,			_	β					1
Contact	-				•	r .	1	9 8	(K	S)					
Emoil cmhealey@shaw.ca	Fax							AES	AES	AES					
SAMPLE ID/LOCATIO	ON	DAT	E TIME	PRE			2	CP-	CP-	CP-					T.
Pr that BC Samples		6/29	/16	1	s	0		17	V	V	H	+	h		ť
2 12		1				1	ť	Ť	ť	17	\vdash	+	Н		
Rids	-					H	∖	+	+	1	\vdash	╈	Η		
7: 17			_		+	H	P			t	\vdash	+			
15607	*	+		\square		+		1	1	⊢	⊢	╈	+		-
150 11			_				┢		1	⊢	\vdash	+	+		+
ISC 14									-	⊢	\vdash	+-	+	+	+
130 16			_				+	+	A	⊢	\vdash	+	+	+	+
BCZI	N						+	1		-	\vdash	461	17	1	
DC 24	8		_			1		Д_		A		- 101			_
nstructions/Comments/Special Requirements	BC 26	v		V	1		V				1	14	9 1	19	1
T	100 C					- 10			0.27	0.55	32 22		_	-	
Sample Matrix Key** DW = Drinking Water WW	= Wastewater	SW = S	urface Water MV	/ = Monito	ring We	II SD	= Solid	/Sludge	S0 = 9	Soil HV	V = Haza	rdous Wa	ste OTH	ER:	
SAMPLE PRESERVATIVES: 1=Unp	reserved 2	2=H2S	604 3=NaO	H 4=H	CI 5=	HNG	03 6	=Na2	\$203	7=2	nOAc	+NaOł	1 8=H	CI/VC	A Vi
Temp Custody Seal # of Containers	DATE	TIN	IE Sa	mples	Relin	nqui	shed	Ву	_		Sam	ples R	eceiv	ed By	1
STEYN NOTE	7576	2:0	0 1	-ed	2	/			_			S	ŧ	ice	-
°C Y N None													1		
°C Y N None								_			_				
°C Y N None															
WETLAB'S Standard Terms and C	onditions	apply	unless wri	tten ag	jreen	nent	s sp	ecify (other	wise	. Pay	ment t	erms	are N	et 30
															-

۲

3/26/2015 5:35:15 PM

0

403005.indd 1

۲

۲

6

403005.indd 1

۲

۲

3/26/2015 5:35:15 PM

www.WETLaboratory.com

Specializing in Soil, Hazardous Waste and Water Analysis

8/18/2016

Rainmaker Resources, Ltd. 15th Street, Suite 300, 235 West Vancouver, BC CAN V7T 2X1 Attn: Chris Healey Order1D: 1608383

Dear: Chris Healey

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 8/11/2016. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Oferny . Delogo

Jennifer Delaney QA Specialist

 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0817

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 1 of 4

Western Environmental Testing Laboratory **Report Comments**

Rainmaker Resources, Ltd. - 1608383

Specific Report Comments

None

Report Legend

В	- Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
I	- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
М	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance eriteria due to probable matrix interference. The reported result should be considered an estimate.
N	- There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
8	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
C	- The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit
General	lLab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B: A result of zero (0) indicates absence for both colliform and Escherichia colli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolvec Oxygen, Sulfite.

Page 2 of 4

SPARKS SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

Rainmaker Resources, Ltd. - 1608383

		A	nalytical L	Penert		•		
Rainmaker Resources, 15th Street, Suite 300, 3 West Vancouver, BC C Attn: Chris Healey Phone: 1(778) 996-181 PO\Project: SC	Ltd. 235 2AN V7T 2X 1 0 Fax:	A	nalyucal f	херогі	10	Date Prin OrderID:	nted: 8/18/201 : <i>1608383</i>	6
Customer Sample ID: WETLAB Sample ID:	21A 1608383-001				Collect I Rec	ate/Time: eive Date:	8/10/2016 8/11/2016 11::	38
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
<u>Trace Metals by ICP-OE</u> Lithium <u>Sample Preparation</u>	<u>.s</u>	SW846 6010B	260	nıg/kg	47.1	4.7	8/17/2016	NV00925
Trace Metals Digestion		EPA 3050B	Complete		1		8/16/2016	NV00925
Customer Sample ID: WETLAB Sample ID:	24A 1608383-002				Collect I Rec	ate/Time: eive Date:	8/10/2016 8/11/2016 11::	38
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
<u>Trace Metals by ICP-OE</u> Lithium <u>Sample Preparation</u> Trace Metals Direction	<u>:s</u>	SW846 6010B	290 Complete	nıg/kg	48.44	4.8	8/17/2016	NV00925
Customer Sample ID: WETLAB Sample ID:	26A 1608383-003		compact		Collect I Rec	ate/Time: eive Date:	8/10/2016 8/11/2016 11::	38
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-OE Lithium Sample Preparation	<u>.s</u>	SW846 6010B	290	mg/kg	49.49	4.9	8/17/2016	NV00925
Trace Metals Digestion		EPA 3050B	Complete		1		8/16/2016	NV00925
Customer Sample ID: WETLAB Sample ID:	39A 1608383-004				Collect I Rec	oate/Time: eive Date:	8/10/2016 8/11/2016 11::	38
Analyte		Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-OE Lithium	<u>.s</u>	SW846 6010B	290	nıg/kg	44.20	4,4	8/17/2016	NV00925
Sample Preparation			AND 16 19				10420002000000	

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

 SPARKS
 ELKO

 475 E. Greg Street, Suite 119
 1084 Lamoille Hwy

 Sparks, Nevada 89431
 Elko, Nevada 89801

 tel (775) 355-0202
 tel (775) 777-9933

 fax (775) 355-0817
 fax (775) 577-9933

 EPA LAB ID: NV00925 - ELAP No: 2523
 EPA LAB ID: NV00926

Page 3 of 4

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Units							
QC16080621	Blank 1	Lithium	SW846	SW846 6010B N		mg/kg						
QCBatchID	QCType	Parameter	Method	8	Result	Actual	% Re	covery	Unit	I		
QC16080621	LCS 1	Lithium	SW846	6010 B	51.1	50.0	102		mg/	kg		
QCBatchID	QCType	Parameter	Method	Spike Sample	Samp le Result	MS Result	MSD Result	Spike Value	Units	MS % Rec.	MSD % Rec.	RPD
QC16080621	MS 1	Lithium	SW846 6010B	1606906-001	221	SC 432	482	50.0	mg/kg	NC	NC	NC

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 Page 4 of 4

		WE	STERM	ENVIRO		ololizina in	Coil Hora	adaura 14	facto and l	Vatar	. 40	hinin	\$	Spar	ks Co	ontrol #	ŧ				
		47	5 E.	G LABO	reet #119 S	parks, Neva	da 89431	I www.V	VETLaborati	ory.co	m	nysis.	E	Elko	Cont	rol #				_	
			te	1 (775)	355-0202 fr	x (775) 355	5-0817						1	VC	ontro	1#	_		1		
		10	te	1 (775)	777-9933 I fa	x (775) 773	7-9933						i	Due	Date	8	37	8	16	,	
		32	30 Po	laris Av	475-8899 fr	x (702) 776	evada 8910 5-6152	02					F	Page		0	of	/			
Clier	,			Rain	maker Reso	ources								1	luman	ound Tin	ne Re	quirer	nents		
Ciler		_		SUIT	E 3000 23	5 - 15TH	STREE	т							Stan	dard	E	7	_	Г	1
Addr	City State & Zin WEST VANCOUVER. BC CAN V7T 2X1											48)ay* (25%) Hour* (10	0%)_	Ċ	_	72 Ho 24 Ho	301° (5 001° (2	0%)	E	<u>i</u>
City,	Content Chris Healey											-	*Surcharges Will Apply Samples Collected From					/	esults)	Via	
Cont	CONNECT CONTROLOGY												Which State?					Report Results via			
Phor	e	(77	8) 8	96-10	510	Collect	Collector's Name D. BEARIN & O. GATTEN						Other Compliance Monitoring?					PDF 🖌 EDD 🖌			
Fax							PWS/Project Name SC					Re	Yes	No V				Other Excel Standard OC Required			ired?
P.O.	Num	ber				PWS/F	Project Nur	nber				Ē	Yes	I	No	1	Yes / No				
Ema	il Cl	nhe	aley	@sha	aw.ca					S	NO OF	-		-	Anal	ses	Req	ues	ted	-	-
		E	sillin	g Add	ress (if differ	ent than C	lient Add	ress)		M	C										
Co	mpa	чу <u>—</u>								Р	O N										
Cit	, Sta	te & J	Zip							E	Т				1						
Co	ntac	_								T	Â	(FI)									Spl. No. 1 2 3
Ph	one					Fax				Y	N	Sa									
Em	ail	cmhe	aley@	2shaw.e	ca				PRES	P	R	P-A									ISD
			S	AMPL	E ID/LOCATI	ON	DATE	TIME	TYPE *	**	s	н Н	┝╌┡╴	+	4	_	+	\rightarrow	+	┾	No
	21A						8/10/16		1	SD	1	V	\square	4	_	+	4	4	_	+	1
	24A						8/10/16		1	SD	1	\checkmark	\square	4						\perp	2
	26A						8/10/16	19	1	SD	1	\checkmark									3
	39A						8/10/16		1	SD	1	\checkmark					Τ				4
			_										П	Т	Т	Т	Т	Т		Т	
													\square	Ť	T		T		600		1
	-										\vdash		\vdash	1	1	+	t	-1	000	2	10
	-										\vdash		\vdash	+		+	$^{+}$	-	28.2		4
-	-	_					-	-	-	-	-	⊢	\vdash	+	+	+	+		000		-
-								-		_	_	_		_	_	_	_	_	_	_	
Instru	ction	s/Cor	nmen	ts/Speci	ial Requirement	E.				_		_	-	-		-	-	_	_	_	
	_			_							_	_		_		_	_			-	
Sam	ple N	atrix	Key**	DW =	Drinking Water W	V = Wastewater	SW = Surfac	e Water M	W = Monitorin;	Well 3	SD =	Solid/Sh	udge SO	= Soi	I HW	= Hazar	dous \	Naste	OTHER	R:	
*SAN	*SAMPLE PRESERVATIVES: 1-Unpreserved 2-H2SO4 3-NaOH 4-HCI 5-HN											8 6-N	la2S20	23 :	7⇒Zr	OAc+	NaC)H I	8-HC	:I/VO	A Vial
Tem	р	Cus	tody	Seal	# of Containers	DATE	TIME	S	amples R	elinq	uist	ned E	By			Samp	les	Rec	eive	d By	1
87.	C	Y	N 🗸	None	24	5/4/16	1138		UPS						1	Y	1	4	1	-	1
	°C	Y	N	None										1	/	1	N	/			`
	°c	Y	N	None										V		1					
	°C	Y	N	None																	
WE	TL	B'S	Sta	ndard	Terms and C	onditions	apply un	less w	itten agre	eme	nts	spec	ify oth	erw	vise.	Paym	nent	ter	ms a	re Ne	et 30.
Clie	Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the																				
sam To t	sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636) initial To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received.																				
unle	unless other agreements are made in writing. This limitation shall apply regardless of the cause of activ												or legal t	heor	y plea	d or ast	serte	d		init	tial 301 2
	I LA	Please contact your Project Manager for details initial												o lot	an add	attiof	isti 16	. D.		001.2	